Diesel engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm.

— CALIFORNIA —

Proposition 65 Warning:
Read this operator’s manual thoroughly before starting to operate your equipment. This manual contains information you will need to run and service your new unit.

Table of Contents

INTRODUCTION .. 2
Models Included .. 2
Model Numbers .. 2
Serial Numbers .. 2

WARRANTY .. 3

SAFETY RULES .. 3 - 7

LOCK OUT / TAG OUT PROCEDURES 8

COMPONENT LOCATIONS
M1066TMCA .. 10 - 11

ENGINE & GENERATOR CONTROL PANELS
Series 3A MCA .. 12

OPERATING PROCEDURES
Before Starting .. 13
Break-In Period .. 14

SERVICING SCHEDULE CHART 15

SERVICING
Lubrication - General .. 16
Checking Oil .. 16
Oil Changes .. 16
Changing Oil Filter .. 16
Air Filter .. 16
Belt Tension .. 17
Valve Clearances .. 18
Fuels - General ... 19
Crankshaft Vibration Damper 19
Fuel Filters .. 20
Bleeding the Fuel System 20
Injectors .. 20 - 21

Injection Pump .. 22
Turbocharger .. 23
Turbo Boost .. 23
Cooling System - General 23
Engine Coolant Specifications 24
Cooling System Flushing 25
Radiator .. 25
Generator Ends ... 26
Electrical System - General 26
Booster Batteries .. 26
Battery Care .. 26
Winterizing / Out-of-Service 27

TROUBLESHOOTING
Electrical .. 28
Engine .. 28 - 30

WIRING DIAGRAM
AC Wiring .. 31 - 32
DC Wiring .. 33

Proprietary Information
This publication is the property of Northern Lights, Inc.
It may not be reproduced in whole or in part without the written permission of Northern Lights, Inc.
© Northern Lights, Inc. All rights reserved. Litho U.S.A. Publication number OM2-2R 01/13
Servicing of marine engines and generator sets presents unique problems. In many cases boats cannot be moved to a repair facility. Marine engines cannot be compared to the servicing of automobiles, trucks or even farm equipment. Failures often occur in remote areas far from competent assistance. Marine engines are taxed far more severely than auto or truck engines; therefore, maintenance schedules must be adhered to more strictly.

Failures begin with minor problems that are overlooked and become amplified when not corrected during routine maintenance.

As operator, it is your obligation to learn about your equipment and its proper maintenance. This is not a comprehensive technical service manual. Nor will it make the reader into an expert mechanic. Its aim is to aid you in maintaining your unit properly.

Model Numbers

Model numbers give the unit's application, block model, aspiration, and RPM:

- **M** - Northern Lights marine generator set
- **1066** - Model number 106 mm bore, 6 Cylinder
- **T, MCA** - T - Turbocharged
 - MCA - Marine & Coast Guard Agency

```
M1066TMCA = Northern Lights®, 1800 RPM, 99 kW marine diesel generator set with a John Deere 6068 engine block with an electronically controlled fuel system and radiator cooled.
```

Serial Numbers

When referencing Alaska Diesel Electric equipment by serial number, please refer only to the number stamped on the Northern Lights® serial number plate.
A warranty registration certificate is supplied with your set. The extent of coverage is described in the Limited Warranty Statement. We recommend that you study the statement carefully.

NOTE: If the warranty is to apply, the servicing instructions outlined in this manual must be followed. If further information is needed, please contact an authorized dealer or the factory.

Safety Rules

NOTICE: Accident reports show that careless use of engines causes a high percentage of accidents. You can avoid accidents by observing these safety rules. Study these rules carefully and enforce them on the job.

IMPORTANT SAFETY INSTRUCTIONS. Electromagnetic equipment, including generator sets and their accessories, can cause bodily harm and life threatening injuries when improperly installed, operated or maintained. To prevent accidents be aware of potential dangers and act safely.

READ AND FOLLOW ALL SAFETY INSTRUCTIONS IN THIS MANUAL, PRIOR TO THE INSTALLATION OF ANY GENERATOR SET OR ACCESSORY. KEEP THESE INSTRUCTIONS FOR FUTURE REFERENCE.

Recognize Safety Symbols and Instructions

In addition to the information found in this section, this operator’s manual uses three different signal words to outline potential dangers of a specific nature.

DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.

WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

Follow All Safety Instructions

Carefully read and understand all safety messages in this manual and on your machine’s safety signs. Keep signs in good and clean condition. Replace missing or damaged signs. Be sure new equipment components and repair parts include the current safety signs. For replacement signs, proper placement of safety signs or clarification on any safety issue, consult your Northern Lights dealer or the factory.

There can be additional safety information contained on parts and components from outside suppliers that is not reproduced in this manual. Consult the suppliers for additional safety information.

Learn how to operate the machine and how to use the controls properly. Only trained personnel should operate machines, or work on or around them.

Keep you machine in proper working condition. UNAUTHORIZED MODIFICATIONS TO THE MACHINERY MAY IMPAIR ITS FUNCTION AND SAFETY PARAMETERS.

Prevent Bypass and Accidental Starting

WARNING

Do not start engine by shorting across start terminal. Engine will start if normal circuitry is bypassed, creating a hazard by runaway machinery.

Start engine only from operator’s station.

Handle Fuel Safely - Avoid Flames

WARNING

Diesel is highly flammable and should be treated with care at all times. Do not refuel while smoking or when near sparks or open flame.

ALWAYS STOP ENGINE BEFORE FUELING MACHINE. Always fill portable fuel tank outdoors. Never fuel a hot engine.
Safety Rules (Continued)

Prevent accidental discharge of starting fluids by storing all cans in a cool, safe place, away from sparks or open flame. Store with cap securely on container. Never incinerate or puncture a fuel container.

Prevent fires by keeping machine clean of accumulated trash, grease and debris. Always clean any spilled fuel as swiftly as possible. Do not store oily rags, which can ignite and burn spontaneously.

Be prepared if a fire starts. Keep a first aid kit and fire extinguisher handy. Keep emergency contact numbers for fire department, doctors, ambulance and hospital near the telephone.

Service Machines Safely

DANGER

Do not wear a necktie, scarf, necklace, rings or other jewelry, or any loose clothing when working near moving parts. Tie long hair behind your head. If any of these items get caught in moving machinery, severe injury or death could result.

Check for any loose electrical connections or faulty wiring.

Look completely around engine to make sure that everything is clear before starting.

Wear Protective Clothing

WARNING

To prevent catching anything in moving machinery, always wear close fitting clothes and safety equipment appropriate to the job.

Prolonged exposure to loud noise can cause hearing loss or impairment.

Wear suitable authorized hearing protection, such as earmuffs or plugs to protect against loud noises.

Operating equipment requires the full attention of the operator. Do not use radio or music headphones while operating machinery.

Practice Safe Maintenance

CAUTION

Understand all service procedures before starting work. Keep area clean and dry. Never lubricate, service, or adjust machine while it is in operation.

Keep hands, feet and clothing away from power-driven equipment. When shutting down an engine, disengage all power and operator controls. Allow the engine to cool completely before beginning any service work.

Securely support any machinery elements that must be raised for service work with support or lifting machinery specifically intended for that purpose.

Keep all parts in good conditions and properly installed. Fix damage immediately. Replace any worn or broken parts. Remove any build up of grease, oil or debris.

Disconnect battery ground cable (-) before making any adjustments or service work.

Stay Clear of Rotating Drivelines

DANGER

Entanglement in rotating drivelines can cause serious injury or death. Keep shields in place at all times. Make sure that rotating shields turn freely in pace with the drivelines.

Do not wear loose fitting equipment around rotating drivelines. Stop the engine and make sure that all moving parts have stopped before making any adjustments, connections, or performing any other type of service to the engine or other driven equipment.
Safety Rules (Continued)

Install all Safety Guards

WARNING

Direct contact with rotating fans, belts, pulley and drives can cause serious injury.

Keep all guards in place at all times during engine operation.

Wear close-fitting clothes. Stop the engine and be sure all fans, belts, pulleys and drives are stopped before making adjustments, connections, or cleaning near fans and their components.

Do not allow anything on your person to dangle into or come in contact with a moving fan, belt, pulley or drive. Fans can act as vacuums and pull materials up from below, so avoid that area as well while in service.

Safe Battery Handling

WARNING

Prevent Battery Explosions

Battery gas is highly flammable. Battery explosions can cause severe injury or death. To help prevent battery explosions, keep sparks, lighted matches and open flame away from the top of battery. When checking battery electrolyte level, use a flashlight.

Never check battery charge by contacting the posts with a metal object. Use a volt-meter or hydrometer.

Frozen batteries may explode if charged. Never charge a battery that has not been allowed to warm to at least 16°C (60°F).

Always remove grounded (-) battery clamp first and replace ground clamp last.

Sulfuric acid in battery electrolyte is poisonous and strong enough to burn skin, eat holes into clothing and other materials, and cause blindness if splashed into eyes.

To Avoid Hazards:

- Fill batteries only in well-ventilated areas.
- Wear appropriate eye protection and rubber gloves.
- Never use air pressure to clean batteries.
- Wear appropriate ventilation equipment to avoid inhaling fumes when adding electrolyte.
- Do not spill or drip electrolyte.
- Use correct jump-start procedure if required.

If acid is spilled on skin or in eyes:

1. Flush skin with water.
2. Apply baking soda or lime to help neutralize acid.
3. Flush eyes with water for 15-30 minutes.
4. Get medical attention immediately.

If acid is swallowed:

1. DO NOT induce vomiting.
2. Drink large amounts of water or milk, without exceeding 2 liters (2 quarts)
3. Get medical attention immediately.

Battery posts, terminals, and related accessories can contain lead and lead compounds, chemicals known to the State of California to cause cancer and reproductive harm. Wash hands after handling.

Handle Chemical Products Safely

WARNING

Direct exposure to hazardous chemicals can cause serious injury. Among the potentially hazardous chemicals that may be used with Northern Lights products are lubricants, coolants, paints and adhesives.

All potentially hazardous chemicals come with a Material Safety Data Sheet (MSDS). The MSDS provides specific details on chemical products, including physical hazards, safety procedures and emergency response techniques.
Safety Rules (Continued)

Read and understand the MSDS for each chemical before you start any job that includes it. Follow the procedures and use appropriate equipment exactly as recommended.

Contact your Northern Lights dealer or Northern Lights factory for MSDS’s used on Northern Lights products.

Work in Well Ventilated Areas

CAUTION

Exhaust fumes from engines contain carbon monoxide and can cause sickness or death. Work in well ventilated areas to avoid prolonged exposure to engine fumes. If it is necessary to run an engine in an enclosed area, route the exhaust fumes out of the area with an approved, leak proof exhaust pipe extension.

Remove Paint Before Welding or Heating

WARNING

Hazardous fumes can be generated when paint is heated by welding, soldering or using a torch. To avoid potentially toxic fumes and dust, remove paint before heating.

- Remove paint a minimum of 100 mm (4 in.) from the area that will be affected by heat.
- If paint cannot be removed, wear an approved respirator.
- If you sand or grind paint, use an approved respirator.
- If you use solvent or paint stripper, remove stripper with soap and water before welding. Remove solvent or paint stripper containers from the area.
- Allow at least 15 minutes for fumes to disperse before welding or heating.

Do not use a chlorinated solvent in an area where welding will occur. Work only in areas that are well ventilated. Dispose of paint and solvent properly.

Service Cooling System Safely

WARNING

Opening a pressurized cooling system can release explosive fluids and causing serious burns. Before opening any pressurized cooling system, make sure the engine has been shut off. Do not remove a filler cap unless it is cool enough to comfortably grip with bare hands. Slowly loosen cap to relieve pressure before opening fully.

Avoid High Pressure Fluids

WARNING

Relieve pressure prior to disconnecting pressurized lines. Escaping fluid under pressure can penetrate the skin causing serious injury. Always relieve pressure before disconnecting hydraulic or other pressurized lines. Tighten all connections firmly before re-applying pressure.

If searching for leaks, use a piece of cardboard. Always protect your hands and other body parts from high-pressure fluids.

If an accident occurs, see a doctor immediately. Any high pressure spray injected into the skin must be removed within a few hours to prevent the risk of gangrene or other infection.

Avoid Heating Near Pressurized Fluid Lines

WARNING

Flammable spray can be generated by heating near pressurized fluid lines, resulting in severe burns and bodily injury. Pressurized lines can rupture when heat goes beyond the immediate flame area. Do not weld, solder or use a torch or open flame near pressurized lines or other flammable fluids.

Do Not Open High-Pressure Fuel System

DANGER

Many Northern Lights engines use high-pressure fuel injection. High-pressure fluid remaining in fuel lines can cause serious injury. Do not disconnect or attempt any repair of fuel lines, sensors, or other
Safety Rules (Continued)

components between the high-pressure fuel pump and nozzles on engines with high pressure fuel systems.

ONLY AUTHORIZED TECHNICIANS CAN PERFORM REPAIRS ON AN HIGH PRESSURE FUEL INJECTION SYSTEMS.

Avoid Hot Exhaust

Avoid exposure to and physical contact with hot exhaust gases. Exhaust parts and streams can reach high temperatures during operation, leading to burns or other serious injury.

Cleaning exhaust filters can also lead to exposure to hot exhaust gas and the injury risk associated with it. Avoid exposure to and physical contact with hot exhaust gases when cleaning exhaust filters.

During auto or manual/stationary exhaust filter cleaning operations, the engine will run at elevated temperatures for an extended period of time. Exhaust parts and streams can reach high temperatures during operation, leading to burns or other serious injury.

Avoid Harmful Asbestos Dust

Inhaling asbestos fibers may cause lung cancer. Avoid breathing any dust that may be generated when handling components containing asbestos fibers, including some gaskets.

The asbestos used in these components is usually found in a resin or otherwise sealed. Normal handling of these components is not dangerous, as long as airborne dust containing asbestos is not generated.

Avoid creating dust. Never use compressed air for cleaning. Avoid brushing or grinding materials containing asbestos. When servicing, wear an approved respirator. A special vacuum cleaner is recommended to clean asbestos. If this vacuum is not available, apply a mist of oil or water on the material containing asbestos. Keep all bystanders away from any area where asbestos dust may be generated.

Use Proper Lifting Equipment and Techniques

Lifting heavy components incorrectly can cause severe injury or damage to machinery. Avoid unbalanced loads. Do not use lifting eyes. Lift the generator set using lifting bars inserted through the lifting holes on the skid. Follow all recommended removal and installation procedures in this and associated Northern Lights manuals.

Use Proper Tools

Makeshift tools and procedures can create safety hazards. Always use appropriate tools for the job.

Use power tools only to loosen threaded parts and fasteners. For loosening and tightening hardware, always use the correct sized tools.

Do not use US measurement tools on metric fasteners, or vice versa. Use only service parts that meet Northern Lights specifications.

Dispose of Waste Properly

Disposing of waste improperly can threaten the environment and lead to unsafe working conditions. Potentially harmful waste used in Northern Lights equipment can include oil, fuel, coolant, filters and batteries.

Use leakproof containers to drain fluid. Do not use food or beverage containers that may mislead someone into drinking from them.

Do not pour waste onto the ground, down a drain or into any water source.
Lock Out / Tag Out Procedures

Scope
During maintenance, repairs or retooling of a Northern Lights generator set, simply turning the machine off or unplugging it while it is being worked on does not give enough protection to others who are not performing the maintenance or repair. Many serious accidents happen when someone thought the machine was turned off, or all of its energy was safely blocked or released.

General Policy

CAUTION
To avoid dangerous or hazardous situations, refrain from any of the following:
- Removing or bypassing a guard or other safety device
- Placing any part of your body in a position where you could be caught by moving machinery.
- Cleaning or oiling machinery when in operation.
- Adjusting circuits, chillers, pumps, air handlers, valves, circuit breakers or fans while in operation.
- Working on piping or high pressure systems.

Lock Out/Tag Out Instructions - Electrical Equipment

WARNING
Be sure the equipment’s ON/OFF switch is in the OFF position and is unplugged from any electrical source before attempting to perform any type of work on the equipment. Obtain an electrical plug cap cover with a lockset. Secure the plug terminal end using the electrical plug lockout cap. Lock the cap and retain the key.

If the equipment is directly wired into an electrical box with a shut off switch, obtain a lock pad and/or the appropriate colored tags and place the lock and tag through the shut off lever. Retain the key until the repair is completed and the machine is safe to start. NEVER give a lock out key to unauthorized personnel.

If the equipment is directly wired into an electrical box without a shut off switch, then a circuit breaker lock out will be required. Obtain a circuit lock and tag set. Install the lock onto the circuit breaker box. Ensure the unit ON/OFF switch is in the OFF position before restarting.

Lock Out/Tag Out Instructions - Pneumatic and Hydraulic Equipment

WARNING
For servicing pneumatic and hydraulic equipment, the following additional procedures must be implemented, following completion of lock out/tag out procedures for the unit to be serviced:

- Shut off air, water or supply valves at the equipment to be serviced.
- Check the local bleed-off point for completed release of pressurized air, water or oil.

If shutting off of air, water or other material cannot be achieved at the local supply valve, shut off valves further back in the system and re-check the bleed-off point until complete shut-off is achieved.

Affix a DO NOT OPERATE tag to each valve handle that requires shut off. Each DO NOT OPERATE tag must be signed and dated by the authorized technician servicing the equipment.

Lock Out/Tag Out Instructions - Air Hose Connected Pneumatic Equipment

WARNING
Equipment connected to the compressed air system through an air hose with a detachable fitting must be shutdown and unplugged. Excess air must be bled prior to removing the air hose, prior to any maintenance or repair activities.

Affix a DO NOT OPERATE tag to the air hose near the detachable fitting. Each DO NOT OPERATE tag must be signed and dated by the authorized technician servicing the equipment. Check that the equipment cannot be operated by activating the ON switch.

Stored Energy

WARNING
Immediately after applying Lock Out or Tag Out devices, ensure that all potentially hazardous stored or residual energy is relieved, disconnected, restrained and otherwise rendered safe.

Verification of Isolation

CAUTION
Verify the machinery or equipment is actually isolated and de-energized prior to beginning work on a machine or on equipment that has been locked out.

Restarting Procedures

CAUTION
Follow the procedures below prior to restoring energy:
- Ensure that all machinery or equipment is properly reassembled. Inspect the machinery or equipment to verify non-essential items have been removed.
- Ensure that all personnel are safely outside danger zones. Notify personnel that lock out/tag out devices have been removed and energy will be reapplied.
- Only authorized personnel may remove lock out/tag out devices or notices.
Component Locations

Figures 1 & 2: M1064T2MCA (for illustrative purposes only - your model may vary)

1. Junction Box
2. Air Cleaner
3. Fuel Filter
4. Intake Manifold
5. Alternator
6. Radiator Shroud
7. Vibration Mount
8. Lube Oil Filter
9. Lube Oil Dipstick
10. Oil Level Switch/Gauge
11. Fuel Manifold
12. Exhaust Manifold
13. Turbocharger
14. Generator End
15. & 16. Pressure Switch & Sender
17. Starter
18. ECU
Figures 1 & 2: M1066TMCA (for illustrative purposes only - your model may vary)

1. Junction Box
2. Air Cleaner
3. Fuel Filter
4. Intake Manifold
5. Alternator
6. Radiator Shroud
7. Vibration Mount
8. Lube Oil Filter
9. Lube Oil Dipstick
10. Oil Level Switch/Gauge
11. Fuel Manifold
12. Exhaust Manifold
13. Turbocharger
14. Generator End
15. & 16. Pressure Switch & Sender
17. Starter
18. Alarm Tank
19. ECU
1. OIL PRESSURE GAUGE
 The oil pressure gauge shows the oil pressure in the engine lubricating system. If the pressure drops below 15 PSI at a speed higher than idling, stop the engine and investigate.

2. COOLANT TEMPERATURE GAUGE
 Water temperature gauge shows the temperature of the cooling water. If the gauge registers over 200° (93.3°C) or drops below 140°(60°C), stop the engine and investigate.

3. DC VOLTOMETER
 When the engine is running, it indicates the voltage output of the alternator.

4. HOUR METER
 Keeps track of the engine running time.

5. SAFETY SHUTDOWN BUTTON
 Push this button down to disable the safety shutdowns (for emergency use), pull it up to enable the safety shutdowns to work.

6. AUTO OR MANUAL SELECTOR SWITCH
 This switch allows the engine to be controlled manually or by a different source.
Operating Procedures

BEFORE STARTING
1. Check the water level by removing the pressure cap from the top of the radiator. In order to give the cooling water room to expand, the level should be about 1 3/4 in. (4-5 cm) below the filler cap sealing surface when the engine is cold. When filling with coolant, the venting cock on top of the turbocharger should be opened to ensure that no air pockets form in the cooling system (see Service Point #14).

 CAUTION: Use protective clothing and open the filler cap carefully when the engine is warm to prevent burns.

2. Check the oil level in the crankcase with the dipstick. The oil level should be between the “waffled area” and the “oo”. Never allow the level to go below the “oo”. Always add the same viscosity of oil as is already in the crankcase (see Service Point #1).

3. Check the fuel tank level and open any fuel valves.

4. Place the battery switch in the ON position.

 NOTE: The battery switch must always be kept ON while the engine is running. If the switch is turned OFF while the engine is running, the battery charging regulator could be ruined.

Operating
1. Check Gauges Often: Oil pressure must be above 29 PSI (if not above 15 PSI within 5 seconds of starting, the engine should be stopped and the problem should be explored). Normal oil pressure is 50 PSI at rated load speed (1800 to 2500 RPM). Oil temperature should be 115°C (240°F) for normal operating temperature. The D.C. voltmeter should read between 13 and 14 volts (26-28 volts, 24 volt systems).

2. Check belt for good alignment.

3. Let the unit run unloaded for a three to five minute warm-up period before applying load.

4. Do not add full electrical load until engine is at maximum operating temperature.

Shutdown
1. Turn the Engine Control Switch to the OFF position.

2. Close the fuel valves, and put the battery switch in the OFF position if the unit will be off for an extended period.

 NOTE: Do not turn the battery switch to OFF while the engine is running.

SHUTDOWNS AND ALARMS
1. Your unit is fitted with a system to protect it from high water temperature or low oil pressure, but only if the shut downs are enabled (with the button pulled up on the control panel - see page 5.)
 a. Other alarms and shutdowns are available as optional equipment.

 NOTE: Do not rely on your warning or shutdown system to the exclusion of careful gauge monitoring. Watching your gauges can prevent damage to the unit and dangerous power losses.

2. Do the following when your shutdown system is activated:
 a. Check the temperature gauge. If the temperature is above 220°F (104°C), shut off the engine immediately.
 b. Use the Trouble Shooting Guide on pages 22-24 to isolate the cause of the overheat.
Operating Procedures

CAUTION: Do not remove the water fill cap of an overheated engine. Escaping high temperature steam can cause severe burns. Allow the engine to cool and then remove the cap slowly, using protective clothing.

c. Make repairs and restart after the temperature gauge registers below 180°F (83°C).
d. Watch the temperature gauge regularly and turn off the unit if the temperature rises above 220°F (104°C). Repeat the troubleshooting process.

3. If the shutdown is activated and the temperature gauge shows temperature within normal temperature range:

a. Check the engine crankcase oil level.
b. If the oil level is low, fill with recommended lubricating oil and restart. Watch the oil pressure gauge carefully and shut off the engine if it does not show a normal reading after a few seconds of operation.
c. If the oil level was normal, DO NOT restart the engine. Call your Northern Lights or Lugger dealer for assistance.

BREAK-IN PERIOD

1. Your engine is ready to be put into service. However, the first 100 hours on a new or reconditioned engine are critical to its life and performance. This is especially true of an engine that runs at a constant speed such as a generator engine.

2. Operate the engine under various conditions, particularly heavy loads with minimal idling, to help seat engine components properly.

3. Oil consumption is greater during break-in as piston rings take time to seat.

4. Your engine comes equipped with break-in oil. Change engine oil and filter at 50 hours using API Service Category CC, CD, or CE break-in oil. Change the oil and filter again at 100 hours. (Consult the lubricants section for oil recommendation.)

5. Frequently check the engine temperature and oil pressure gauges.

Cold Weather Operation

1. Cold weather starting aids are required for air temperatures below 0°C (32°F). These might include intake air heaters, coolant heaters, or fuel heaters. Additional starting aids may be needed in temperatures below -30°C (-22°F).
The Servicing Schedule Chart below shows the service schedule required for proper maintenance of your marine generator set. More detailed coverage of each Service Point (SP) is listed on the page noted in the ‘page’ column.

DAILY:
- SP1: Check oil level in engine
- SP8: Check primary fuel filter
- SP15: Check cooling water level, visually inspect radiator

AFTER FIRST 50 HOURS:
- SP2: Change engine oil
- SP3: Change lube oil filter

EVERY 50 HOURS:
- SP21: Check electrolyte in batteries

AFTER FIRST 100 HOURS / EVERY TWO WEEKS:
- SP2: Change engine oil after first 100 hrs., then check every 2 wks.
- SP3: Change oil filter after first 100 hrs., then check every 2 wks.
- SP7: Check crankshaft vibration damper
- SP15: Check coolant level

EVERY 250 HOURS:
- SP2: Change engine oil
- SP3: Change lube oil filter
- SP4: Check air cleaner

EVERY 500 HOURS / YEARLY:
- SP4: Replace air cleaner
- SP5: Check belt condition
- SP9: Change primary fuel element (Racor)
- SP10: Change secondary fuel filter
- SP11: Check injectors
- SP14: Check turbocharger boost pressure
- SP16: Check cooling system
- SP22: Check the state of the charge of the batteries
- SP25: Check engine mounts
- SP27: Check air intake hoses
- SP29: Check electrical ground connection

EVERY 2000 HOURS:
- SP6: Check & adjust valve clearance
- SP7: Check crankshaft vibration damper
- SP12: Check fuel injection pump
- SP16: Flush cooling system
- SP17: Check and clean radiator
- SP23: Test thermostats

Service Schedule Chart

<table>
<thead>
<tr>
<th>SERVICE POINT</th>
<th>PAGE</th>
<th>OPERATION</th>
<th>DAILY</th>
<th>50 Hours</th>
<th>100 Hours</th>
<th>250 Hours</th>
<th>500 Hours</th>
<th>2000 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP1</td>
<td>10</td>
<td>Check oil level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP2</td>
<td>10</td>
<td>Change engine oil</td>
<td>2)</td>
<td>1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP3</td>
<td>10</td>
<td>Change lube oil filters</td>
<td>2)</td>
<td>1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP4</td>
<td>10</td>
<td>Check air cleaner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP5</td>
<td>12</td>
<td>Check belt condition</td>
<td>2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP6</td>
<td>13</td>
<td>Check valve clearances</td>
<td>2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP7</td>
<td>13</td>
<td>Check crankshaft vibration damper</td>
<td>5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP21</td>
<td>20</td>
<td>Check electrolyte in batteries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP22</td>
<td>20</td>
<td>Check condition of batteries with hydrometer</td>
<td>2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP23</td>
<td>20</td>
<td>Test thermostats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP29</td>
<td>20</td>
<td>Check electrical ground connection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP25</td>
<td>10</td>
<td>Check engine mounts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP27</td>
<td>10</td>
<td>Check air intake hoses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP26</td>
<td>13</td>
<td>Check primary filter (Racor)</td>
<td>3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP9</td>
<td>13</td>
<td>Change primary filter element (Racor)</td>
<td>3) 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP10</td>
<td>13</td>
<td>Change secondary fuel filter</td>
<td>2) 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP11</td>
<td>14-15</td>
<td>Check injectors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP12</td>
<td>16</td>
<td>Check fuel injection pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP13</td>
<td>17</td>
<td>Check air, oil & cooling water lines for leakage</td>
<td>2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP14</td>
<td>17</td>
<td>Check boost pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP15</td>
<td>19</td>
<td>Check cooling water level, visually inspect radiator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP16</td>
<td>19</td>
<td>Check and flush cooling system</td>
<td>2)</td>
<td></td>
<td></td>
<td></td>
<td>7)</td>
<td></td>
</tr>
<tr>
<td>SP17</td>
<td>19</td>
<td>Check and clean radiator</td>
<td>2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP21</td>
<td>20</td>
<td>Check electrolyte level in batteries</td>
<td>2) 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP22</td>
<td>20</td>
<td>Check condition of batteries with hydrometer</td>
<td>2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP23</td>
<td>20</td>
<td>Test thermostats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP29</td>
<td>20</td>
<td>Check electrical ground connection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Change the oil and filter at 50 hours, using break-in oil again, until changing it at 100 hours, then at every 250 hours.
2) Perform all maintenance once a year even if hour level has not been reached.
3) Consult manufacturer’s maintenance schedule.
4) Or whenever necessary.
5) Replace damper every 4500 hours or after 60 months.
6) Check at 5000 hours.
7) Check cooling system at 500 hours, flush at 2000 hours.
LUBRICATION

Break-in oil

1. Use one of the following during the first 100 hours of operation:
 a. John Deere Engine Break-In Oil
 b. API Service Category CC, CD, or CE oil
 c. ACEA Specification E1
2. Do not use John Deere PLUS-50 oil or engine oils meeting API CG4, API CF4, ACEA E3, or ACEA E2 performance levels during the first 100 hours of operation of a new or rebuilt engine. These oils will not allow the engine to break-in properly.

Lubrication - General

1. Use only clean, high quality lubricants stored in clean containers in a protected area.
2. These oils are acceptable after the first 100 hours:
 a. ACEA Oil Sequence E5 and E4
 b. API Service Category CI-4 or CH-4
 c. ACEA Oil Sequence E3 multi-viscosity oil.
3. Use the proper weight oil for your average operation temperature.
4. Some increase in oil consumption may be expected when SAE 5W and SAE 5-20W oils are used. Check oil level frequently.
5. Never put additives or flushing oil in crankcase.

SP1. CHECK ENGINE OIL LEVEL

1. Check the oil level in the crankcase, with the oil dipstick, daily.
2. The oil level must be between the “Waffled area” and the “oo”. Never allow the level to go below the “oo”.
3. Always add the same viscosity of oil as is already in the crankcase.

<table>
<thead>
<tr>
<th>Air Temperature</th>
<th>Single Viscosity</th>
<th>Multi Viscosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above 32°F (0°C)</td>
<td>SAE-30W</td>
<td>SAE15-40W</td>
</tr>
<tr>
<td>-10°F to 32°F (-23°C to 0°C)</td>
<td>SAE-10W</td>
<td>SAE10-30W</td>
</tr>
<tr>
<td>Below -10°F (-23°C)</td>
<td>SAE-5W</td>
<td>SAE5-20W</td>
</tr>
</tbody>
</table>

SP2. OIL CHANGES

1. Using the oil recommended above, change the engine oil and filter after the first 50 hours of operation, the first 100 hours and every 250 hours thereafter.
2. During intermittent cold weather operation, change oil every 100 hours or six weeks, whichever comes first.
3. Change oil at any seasonal change in temperature when a new viscosity of oil is required.
 a. Remove plug from outlet in base frame. Screw in owner-supplied drain hose.
 b. Open valve at oil pan outlet. After oil has been drained into suitable container, close valve, remove drain hose and replace plug in base frame outlet.
 c. Refill engine with recommended oil.
4. Engine Lube Oil Capacity:

<table>
<thead>
<tr>
<th>Capacity</th>
<th>M1064T2 @ 60 Hz</th>
<th>M1064T2 @ 50 Hz</th>
<th>M1066T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
<td>15.5 qts.</td>
<td>21.6 qts.</td>
<td>20.1 qts.</td>
</tr>
<tr>
<td>Liter</td>
<td>14.7 liters</td>
<td>20.5 liters</td>
<td>19.0 liters</td>
</tr>
</tbody>
</table>

SP3. CHANGING OIL FILTER

1. Change the lube oil filter every 250 hours, after the initial 50 and 100 hour change.
2. Use a filter wrench to remove old filter. Dispose of filter in approved manner.
3. Make sure the gasket from the old filter is removed and discarded.
4. Lubricate the rubber gasket on the new filter and screw it on nipple until gasket meet the sealing surface.
5. Using hands only, no wrench, tighten filter one-half turn farther. Overtightening can do damage to filter housing.
6. Fill engine with recommended oil. Start engine and check for leakage. Stop engine and check oil level. Add additional oil if necessary.

SP4. AIR CLEANER

1. Inspect air cleaner every 100 hours. Replace air cleaner element every 500 hours.
2. Clean the rubber tube at the cleaner. Loosen the hose clamp and the attaching strip for the cleaner.
3. Make sure the rubber tube is in good condition and that new filter is absolutely clean and installed properly.
4. Start the engine and check for leaks.
 NOTE: Make absolutely sure no impurities enter the engine while changing the element. Do not run the engine with the air cleaner removed.
Servicing

SP5. BELT TENSION

1. Inspect the belt for cracks, stretched out areas, or frays and replace if needed.
2. Twist the belt in the middle of a 10 to 12 inch span (254-305 mm) with two fingers. It should turn 75 to 85 degrees if it is properly tensioned. If it turns more it needs to be tightened, if it can not turn that much it needs to be loosened.
3. Loosen Capscrews shown (A & B, Figure 4)
4. Using torque wrench as shown in Figure 4, Rotate tensioner until a reading of 100 lb is reached. Hold in position and retighten fasteners A & B.
 Note: Do not pry against the alternator rear frame.
5. Pry outward on the tension bracket or the alternator front frame to stretch the belt, until the specified tension is achieved.

New Belt Tension470 -650 N (105-145 lb.-force)

Used Belt Tension........400 -580 N (90-130 lb.-force)

Note: New belts are considered used after ten minutes of running time.
6. Re-tighten capscrews B & C, run engine for ten minutes and re-check belt tension.

Note: If an automatic spring tensioner is used, a belt tension gauge will not give an accurate measure of the belt’s tension. Measure the spring tensioner’s tension instead, as follows.
1. Using a torque wrench, remove the belt from the pulleys using a breaker bar and socket on the tension arm.
2. Check the pulleys and bearings while the belt is off. See dealer if replacements are needed.
3. Release the tension on the tension arm and remove the breaker bar.
4. Mark a line as shown (Figure 5A).
5. Measure 21 mm (.83 in.) down from (A) and put a line (B) on the tensioner mounting base.
6. Install a torque wrench (Figure 6C) and align the center of the pulley and tensioner, aligning marks.
7. Record the torque wrench measurement and compare it with the below specification.

Spring Tension Torque18 -22 N•m (13-16 lb.-ft.)

Note: The belt tensioner roller capscrew threads are Left-Hand threads.

Reproduced by per- mission of Deere & Company, c2005. Deere & Company. All rights reserved. RG12065 Figure 6
SP6. VALVE CLEARANCES

The following special tools will be needed:
 JDE 820 or JDE 83 Flywheel Turning Tool,
 JDE 81-4 Timing Pin.
1. Remove rocker arm cover with ventilator tube.
2. Remove plastic plugs in engine timing holes on front side of flywheel.
3. Rotate flywheel in clockwise direction (viewed from water pump) with the Flywheel Turning Tool until the Timing Pin engages timing hole in the flywheel. Both rocker arms for No. 1 cylinder will be loose at Top Dead Center. If they are not, remove the timing pin and rotate the flywheel one complete turn and reinstall the timing pin in the flywheel.
4. Valve clearances must be checked with the engine cold.
 Intake Valve: 0.012-0.015 in. (0.31-0.38 mm)
 Exhaust Valve: 0.016-0.019 in. (0.41-0.48 mm)
5. If the valves need adjusting, loosen the jam nut (A on Figure 9) on the rocker arm adjusting screw. Turn the adjusting screw until you feel a slight drag when the feeler gauge slips. With a screwdriver, hold the adjusting screw from turning while tightening the jam nut to specifications. Check the clearance again after tightening the jam nut. Re-adjust as needed.

4-CYLINDER ENGINES:
Lock No. 1 piston at TDC compression stroke (B).
Adjust valve clearance on No. 1 and No. 3 exhaust valves and No. 1 and No. 2 intake valves.
Rotate flywheel 360°. Lock No. 4 piston at TDC compression stroke (C).

NOTE: Firing order is 1 - 3 - 4 - 2

6-CYLINDER ENGINES:
Adjust valve clearance on No. 2 and No. 4 exhaust valves and No. 3 and No. 4 intake valves.

NOTE: Firing order is 1 - 5 - 3 - 6 - 2 - 4

6-CYLINDER ENGINES:
Lock No. 1 piston at TDC compression stroke (B).
Adjust valve clearance on No. 1, No. 3, and No. 5 exhaust valves and No. 1, No. 2, and No. 4 intake valves.
Rotate flywheel 360°. Lock No. 6 piston at TDC compression stroke (C). Adjust valve clearance on No. 2, No. 4, and No. 6 exhaust valves and No. 3, No. 5, and No. 6 intake valves.
Servicing

FUELS - GENERAL

1. Use only clean, high quality fuels of the following specifications, as defined by ASTM designation D975 for diesel fuels:
 a. Use Grade No. 2 diesel at ambient temperatures above freezing 30°F (0°C).
 b. Use Grade No.1 at ambient temperatures below freezing and for all temperatures at an altitude of above 5,500 ft. (1500 meters).
2. Sulphur content should not exceed 0.5% (preferably less than 0.5%).
3. The cetane number should be a minimum of 45.
4. DO NOT use these unsuitable grades of fuel:
 a. Domestic heating oils, all types, b. Class B engine, c. Class D domestic fuels, d. Class E, F, G or H industrial or marine fuels, e. ASTM-D975-60T No. 4-D and higher number fuels, f. JP4
5. Storing fuel:
 a. Keep dirt, scale, water and other foreign matter out of fuel.
 b. Avoid storing fuel for long periods of time.
 c. Fill the fuel tank at the end of each day's operation. This will reduce condensation.
6. Biodiesel:
 Biodiesel involves the transesterification of vegetable oils or animal fats. Mainly in the U.S. soybean methyl ester is used (SME), but in Europe mainly rapeseed (canola) methyl ester is made (RME), and in Asia palm methyl ester is made (PME). 100% biodiesel (B100) is made in compliance with ASTM D6751 or EN14214 (EU) specifications. Biodiesel may be used in a 5% blend (5% biodiesel/95% diesel) from a BQ-9000 accredited producer. 20% biodiesel blends can only be used if they meet ASTM D6751 or EN14214 (EU) specifications. A 2% reduction in power and a 3% reduction in fuel economy can be expected using a 20% blend, and a fuel conditioner is recommended. Biodiesel blends must be used within 90 days of their manufacture. Oil level, leaking, microbial growth, plugging, and component degradation all must be checked more frequently using biodiesel blends. Request a certificate of analysis from an approved biodiesel fuel distributor to make sure the blend meets specifications.

 NOTE: Using raw pressed or partially refined vegetable oils or recycled greases as fuel (which have not been through transesterification) could cause engine failure.

SP8-10. FUEL FILTERS

1. Your engine or generator set should have a primary fuel filter installed. We recommend the Racor brand of fuel filter - water separators.
 a. Check the primary fuel filter daily as recommended by the filter manufacturer. Empty the collection bowl as necessary.
 b. Change the element every 500 hours or whenever necessary.
 c. If the bowl fills with water, change the primary and secondary elements immediately.

2. Change secondary fuel filter every 500 hours.
 NOTE: The fuel filter on the engine is considered the “secondary fuel filter”. The engine will be fitted with a quick change disposable secondary fuel filter.

SP7. CRANKSHAFT VIBRATION DAMPER (6 Cylinder Engines Only)

1. Remove belts.
2. Try to turn the vibration damper in both directions while grasping it with both hands. If rotation can be felt, the damper is defective and should be replaced.

 NOTE: The vibration damper assembly should be replaced every 4500 hours or 60 months, whichever occurs first, as the vibration damper assembly is not repairable.

3. Place a dial indicator (Figure 10) so that the probe contacts the damper’s outer diameter in order to check the damper radial runout.
4. Make sure the engine is at operating temperature, then rotate the crankshaft using the JD281A, JDE81-4, or the JDE83 Flywheel Turning Tool.
5. If the runout reading exceeds the below specification, replace the vibration damper.

 Vibration Damper Maximum
 Radial Runout1.50 mm (0.060 in.)

NOTE: The vibration damper assembly should be replaced every 4500 hours or 60 months, whichever occurs first, as the vibration damper assembly is not repairable.

Reproduced by permission of Deere & Company, c2004. Deere & Company. All rights reserved. RG8018 Figure 9

Reproduced by permission of Deere & Company, c2004. Deere & Company. All rights reserved. RG7508 Figure 10
Servicing

SP8-10. FUEL FILTERS (Continued)

a. Turn off the fuel.
b. Open the filter drain plug (Figure 11-A) and drain the filter.

c. Remove the secondary fuel filter by turning the filter clamp (Figure 11-B) counter clockwise until the filter cartridge (Figure 11-C) slides out.

NOTE: Before installing a new filter cartridge make sure the surfaces where the cartridge comes in contact with the mounting plate are absolutely clean. Dirt can be washed into the fuel injection system. This may result in severe damage to the fuel injection pump or nozzles. Your generator set may have two secondary filters, depending on the fuel supply system. Do not “prefill” the new fuel filter as the fuel used may be contaminated and damage the fuel system components.

d. Install new filter cartridge.
e. Turn on the fuel.

1. Whenever the fuel system has been opened for service, (lines disconnected, filter changed, etc.) it will be necessary to bleed air from the system.
a. To bleed the fuel system, loosen the bleed plug (Figure 11-D) on the fuel filter. Operate the primer pump lever on fuel transfer pump (see component locations) until most of the air bubbles are expelled and clear fuel escapes the bleed plug. Tighten the bleed plug.
b. If the engine will not start, it may be necessary to loosen the fuel supply pipe at the pump. Operate primer lever of fuel supply pump until fuel flow is free from air bubbles. Retighten fuel supply line to 22 ft. lb. (30 N•m).
c. If engine still doesn't start, loosen fuel line connection at injection nozzle. Always use a back up wrench when loosening or tightening fuel lines at nozzles and injection pump to avoid damage. With throttle on full, crank the engine over with the starter until fuel without air flows from the loose fuel pipe connection. Repeat procedure for remaining nozzles, if necessary, until engine starts or until air has been removed from system. Tighten the connections to 20 foot lb. (27 N•m).

SP11. INJECTORS

1. Fuel injectors should be checked by a Lugger-Northern Lights dealer or qualified fuel injection shop every 5000 hours.

2. Injector Removal:
 You will need the following special tools:
 JDE38A-Injection Nozzle Puller
 JDE39-Nozzle Bore Cleaning Tool, JD258-Pilot Tool
 a. Before removal, carefully remove all dirt from the cylinder head around fuel injection nozzles. Clean with compressed air to prevent dirt from entering the cylinders or valve seats. Plug the bore in the cylinder head after each fuel injection nozzle has been removed. Cap fuel line openings as soon as they are disconnected.
 b. Immediately fit protective caps over the nozzle tips and the line connections to avoid handling damage.
Servicing

c. Do not bend the fuel delivery lines. When loosening the fuel pressure lines, hold male union of nozzle line stationary with a backup wrench.
d. Loosen nuts to remove leak-off lines and T-fittings and disconnect fuel injection line from nozzle.

NOTE: When all fuel injection nozzles have to be removed, disconnect leak-off line assembly at fuel tank, at injection pump, and at each nozzle T-fitting. Lift off complete leak-off line as an assembly.

e. Remove cap screw, clamp and spacer.
f. Pull injection nozzle out of cylinder head with JDE38A Injection Nozzle Puller.

NOTE: Do not use screwdrivers, pry bars, or similar tools for this as they might damage the injection nozzle.

3. Clean Injector Bore:
Always turn the tool clockwise through the bore even when removing from bore, otherwise tool may become dull.
a. Clean nozzle bore with JDE39 Nozzle Bore Cleaning Tool. Blow debris from bore with compressed air and plug the bore to prevent entry of foreign material.

4. Clean injection nozzles:
a. Remove carbon stop seal (Figure 12-A) and upper sealing washer (Figure 12-B), using a needle-nose pliers. Discard seals.
b. Clean exterior of nozzle by soaking in clean solvent or diesel fuel. Clean tip with brass wire brush.

5. Install seals on injection nozzle.

NOTE: Each time an injection nozzle is removed from the cylinder head, replace carbon stop seal (B) with a new one.
a. Position JD258 (ROS16477) Pilot Tool (Figure 13-C) over nozzle tip. If Pilot Tool (included in cleaning kit) is not available, use a No. 16189 Nozzle Protector Cap found on every new or replacement nozzle.
b. Position a new carbon stop seal (Figure 13-B) on pilot tool. Use a new seal washer (Figure 13-A) to help slide the carbon seal into place until it seats in its groove on nozzle body.
c. Continue to slide upper sealing washer onto nozzle body until it seats against inlet fitting.

6. Install injection nozzles:

NOTE: Before installing injection nozzles, make sure nozzles are clean and free from oil or grease. Do not grease or oil the nozzles.
a. Remove plug (if installed previously) from nozzle bore in cylinder head and blow out bore with compressed air.
b. Make sure that the sealing surface of the cylinder head (on which the seal washer will be resting) is smooth and free of damage or dirt. This could prevent proper sealing. Dirt and roughness could also cause distortion to nozzle when the attaching screw is tightened, making the valve stick.
c. Install nozzle in cylinder head using a slight twisting motion as nozzle is seated in bore.
d. Install spacer and capscrew. Do not tighten capscrew at this stage.

NOTE: Do not scrape or disturb the teflon coating on the nozzle body above the carbon stop seal groove.
Install injection nozzles (continued):

Figure 14: Shows relationship of parts required for installation.

e. Connect fuel pressure line to nozzle. Leave connection slightly loose until air is bled from system.
f. Tighten nozzle hold-down cap screws to 27 foot lb. (37 N• m).
g. Install leak-off assembly.
h. Bleed air from loose injection line connection. Tighten connection using two wrenches.

SP12. INJECTION PUMP

1. Since operating conditions may vary considerably, it is difficult to give a definite service interval. But, as a rule, the pump settings, maximum speed, idle speed and exhaust smoke should be checked by your dealer after every 2000 hours of operation. Service of the fuel injection pump should only be done if checks indicate pump malfunction.

2. Black smoke can be an indication of pump malfunctions. Before servicing pump, check the other possible causes.
 a. Check cleanliness of air filter.
 b. Check valve clearances.
 c. Clean and check injectors.

3. Any repair which involves disassembly of the injection pump must be carried out by specially-trained mechanics at an authorized dealer with the proper tools and test devices. Special tools are needed to re-install the injection pump and match the engine timing.

 NOTE: All warranties on the engine become null and void if the injection pump seals are broken by unauthorized persons.
SP13. TURBOCHARGER
1. Check for air leaks every 100 hours. Air leakage will lower engine output and may cause black exhaust smoke and soot.
2. Listen along air line while engine is running. A whistling or hissing sound indicates leakage.
3. Leakage on the pressure side, between turbo and engine, can be found by applying soapy water to the air line.
4. Tighten the hose clamps, replace hose or gaskets as required.
5. Check to see that the lubrication and cooling lines are tight and without leaks.

SP14. TURBO BOOST
1. This check measures the amount of air the turbo is pushing into the engine. It should be done by an authorized dealer every 500 hours.
2. On the inlet manifold there is a 1/8" NPT threaded port. Remove the plug and install the boost gauge hose. Refer to your engine specifications for correct pressure.

COOLING REQUIREMENTS
1. To meet cooling system protection requirements, the coolant solution must consist of:
 a. Quality water
 b. Ethylene glycol concentrate (EGC) commonly known as antifreeze.
 c. Supplemental coolant additives (SCA’s).
2. A coolant solution of ethylene glycol concentrate (EGC-antifreeze), quality water and supplemental coolant additives (SCA’s) MUST be used YEAR ROUND to protect against freezing, boil-over, liner erosion or pitting and to provide a stable, noncorrosive environment for cooling system components.
3. Ethylene glycol coolant concentrate (antifreeze) normally DOES NOT contain the SCA chemical inhibitors needed to control liner pitting or erosion, rust, scale, and acidity.

LINER EROSION (PITTING)
1. Cylinder liner walls (Figure 15-A) which are in contact with engine coolant (Figure 15-B) can be eroded or pitted unless the proper concentration and type of SCA’s are present in the coolant. Water pump impellers are also susceptible to pitting.
2. Vapor bubbles (Figure 15-C) are formed when the piston's impact causes the liner walls to vibrate, sending pressure waves into the coolant.
3. These tiny vapor bubbles collect on the surface of metal parts. As the bubbles collapse (pop) a microscopic piece of metal is eroded from the metal part. Over a period of time, this pitting may progress completely through the cylinder liner of a wet-sleeve, heavy-duty diesel engine. This allows coolant to enter the combustion chamber. Engine failure or other serious damage will result.

A - Cylinder Liner Walls B - Engine Coolant C - Vapor Bubbles

Figure 15

4. Unprotected engines with low quality water as coolant can have liner failure in as few as 500 hours.

WATER QUALITY
1. Distilled, deionized, soft water is preferred for use in cooling systems. Bottled distilled water from a food store or water supplier is recommended. Tap water often has a high mineral content. Tap water should NEVER be put in a cooling system unless first tested by a water quality laboratory. Do not use water made by the reverse osmosis method unless it has been PH neutralized.
2. Here are acceptable water quality specifications:

<table>
<thead>
<tr>
<th>Contaminates</th>
<th>Parts per Million</th>
<th>Grains per Gallon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Chlorides</td>
<td>40</td>
<td>2.5</td>
</tr>
<tr>
<td>Maximum Sulfates</td>
<td>100</td>
<td>5.9</td>
</tr>
<tr>
<td>Maximum Dissolved Solids</td>
<td>340</td>
<td>20.0</td>
</tr>
<tr>
<td>Maximum Total Hardness</td>
<td>170</td>
<td>10.0</td>
</tr>
<tr>
<td>PH Level 5.5 to 9.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. If chlorides, sulfates or total dissolved solids are higher than the above given specification, the water must be distilled, demineralized, or deionized before it is used in a cooling system.

4. If total hardness is higher than 170 ppm and all other parameters are within the given specifications, the water must be softened before it is used to make coolant solution.

EGC: ETHYLENE GLYCOL CONCENTRATE (ANTIFREEZE)

CAUTION: EGC (Antifreeze) is flammable. Keep it away from any open flame. Avoid contact with eyes. Avoid contact with skin. Do not take internally. In case of contact, immediately wash skin with soap and water. For eyes, flush with large amounts of water for at least 15 minutes. Call a physician. KEEP OUT OF REACH OF CHILDREN. Follow all warnings on the container.

1. Ethylene glycol coolant concentrate is commonly mixed with water to produce an engine coolant with a low freeze point and high boiling point.

2. A low silicate form of ethylene glycol coolant is recommended for all diesel engines.

3. Use an ethylene glycol coolant concentrate meeting ASTM D 4985P, SAEJ1941, General Motors Performance Specification GM1899M, or formulated to GM6038M.

4. This product is concentrated and should be mixed to the following specification.

5. If additional coolant solution needs to be added to the engine due to leaks or loss, the glycol concentration should be checked with a hydrometer to assure that the desired freeze point is maintained.

Distilled EGC % Freeze Boiling

<table>
<thead>
<tr>
<th>Distilled Water %</th>
<th>EGC % Antifreeze</th>
<th>Freeze Point</th>
<th>Boiling Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimum</td>
<td>50%</td>
<td>-37°C (-34°F)</td>
<td>+109°C (226°F)</td>
</tr>
<tr>
<td>Minimum</td>
<td>60%</td>
<td>-24°C (-12°F)</td>
<td>+106°C (222°F)</td>
</tr>
<tr>
<td>Maximum</td>
<td>40%</td>
<td>-52°C (-62°F)</td>
<td>+111°C (232°F)</td>
</tr>
</tbody>
</table>

IMPORTANT

1. DO NOT use methyl alcohol or methoxy propanol base EGC. These concentrates are not compatible with chemicals used in supplemental coolant additives. Damage can occur to rubber seals on cylinder liners which are in contact with coolant.

2. DO NOT use an EGC containing sealer or stop-leak additives.

3. DO NOT use EGC containing more than 0.1% anhydrous metasilicate. This type of concentrate, which is intended for use in aluminum engines, may cause a gel-like deposit to form that reduces heat transfer and coolant flow. Check container label or consult with supplier.

SUPPLEMENTAL COOLANT ADDITIVE (SCA)

CAUTION: Supplemental coolant additive contains alkali. Avoid contact with eyes. Avoid contact with skin. Do not take internally. In case of contact immediately wash skin with soap and water. For eyes, flush with large amounts of water for at least 15 minutes. Call a physician. KEEP OUT OF REACH OF CHILDREN. Follow all warnings on the container.

1. Important for heat exchanger cooled engines: Additional SCA's should NOT be added to the mixture of EGC/H₂O on initial fill up of engines with a coolant conditioner-filter. A high SCA concentration will result and can cause silicate-dropout. When this happens, a gel-type deposit is created in the cooling system which retards heat transfer and coolant flow.

2. If additional SCA's are needed, prepare a mixture of 50% quality water and 50%EGC (antifreeze). Add liquid SCA at a rate of 3%, by volume. Example: 30 mL of SCA per liter of H₂O/EGC mixture (1.0 fl oz of SCA per qt of H₂O/EGC). Add the resulting mixture to the cooling system in quart increments. Run the engine for 2 hours and retest the coolant. Continue process until SCA concentration meets recommended levels.

3. SCA is available from your Northern Lights dealer in the following sizes.

| Pint - Part Number |..................20-00002
1/2 gallon - Part Number |......20-00003

4. DO NOT use any coolant system additives containing soluble oil.
COOLANT TESTING
1. Coolant test kits are available to allow on-site evaluation of the coolant condition.
2. The kits use small strips of paper which are dipped into the coolant. The paper changes color and indicates the SCA concentration. It also indicates the amount of EGC (antifreeze).
3. Test kits are available through your Northern Lights or Lugger Dealer.
 4 Pack - Part Number.......................20-00005
 50 Pack - Part Number.....................20-00010

SP15. CHECKING COOLANT LEVEL
CAUTION: The cooling water in the engine reaches extremely high temperatures. You must use extreme caution when working on hot engines to avoid burns. Allow the engine to cool before working on the cooling system. Open the filler cap carefully, using protective clothing when the engine is warm.

1. Check the coolant level each day before starting the engine.
2. Remove the pressure cap from the radiator and check water level. In order to give the coolant an opportunity to expand, the level should be about 1 3/4 in. (4-5 cm) below the filler cap sealing surface when the engine is cold. When filling with coolant, the venting cock on top of the turbocharger (for engines fitted with turbocharger) should be opened to ensure that no air pockets form in the cooling system.
3. The pressure valve in the filler cap releases when the pressure is approximately 10 PSI (.689 bar). Use a cap pressure tester to check cap if you suspect it is faulty.
4. The makeup coolant, added to compensate for loss or leaks, must meet engine coolant requirements outlined in previous section.

SP16. FLUSHING THE COOLING SYSTEM
CAUTION: The cooling water in the engine reaches extremely high temperatures. You must use extreme caution when working on hot engines to avoid burns. Allow the engine to cool before working on the cooling system. Open the filler cap carefully, using protective clothing when the engine is warm.

1. Flush the cooling system and check for leaks and blockage every 2000 hours. The engine must be stopped and cold.
2. Remove the pressure cap from the radiator with caution. If applicable, open the cooling system air vent on top of turbocharger.
3. Open the drains on the exhaust manifold and engine block. Drain the fresh water system (see Component Locations, pages 4).
4. For vessels with keel cooling, the vessel must be out of the water to allow draining of the keel cooler.
5. With drains open, pour clean water into the expansion tank. When the water from drain is clear and free from discoloration and sediment, close that drain. When all drains are closed, flushing is complete.
6. Fill the fresh water system by pouring the recommended coolant mixture as described in previous sections.
7. Close cooling system air vent on turbocharger.
8. Start the engine. Check hoses and connections and repair any leakage.

SP17. RADIATOR
1. Check for leaks.
2. Remove debris from radiator fins daily.
3. In very dusty applications clean the radiator with compressed air or steam cleaner every 100 hours or as needed. Clean in reverse direction of airflow.
2. The maintenance and operation recommendations for the generator end are in a separate Owner's Manual. If you do not have one of these manuals, contact your local Northern Lights dealer.

ELECTRICAL SYSTEM - GENERAL

1. Never switch battery switch off or break the circuit between the alternator and batteries while the engine is running. Regulator damage can result.
2. DO NOT reverse the polarity of battery cables when installing the battery.
3. When welding on the unit, disconnect the regulator and battery. Isolate the leads.
4. Disconnect battery cables when servicing the DC alternator.
5. Never test with a screwdriver, etc., against any terminal to see if it emits sparks.
6. A DC circuit breaker protects your control panel and wiring harness.

BOOSTER BATTERIES

- **CAUTION:** Battery Gas Can Explode. Keep all flames and sparks away from batteries.

1. Before changing or using booster batteries, check battery electrolyte level. Add distilled water.
2. Booster and main batteries must have the same voltage rating.
3. First, connect positive (+) terminal of booster battery to positive (+) terminal of main battery.

![Diagram of Booster Battery Connections](image)

4. Then, connect negative (-) terminal of booster battery to ground on the engine block (see Figure 16).
5. Remove booster battery after starting engine.
6. Sealed batteries: see manufacturer charging and booster instructions.

SP21-22. BATTERY CARE - LEAD/ACID TYPE BATTERIES

1. Check electrolyte level every 50 hours or once per month. Add distilled water to manufacturer's recommended level.
2. Batteries, cables and cable terminals should be checked and cleaned every 100 hours. Clean corrosion with a water and baking soda solution. Flush with clean water. Tighten terminals and grease them to inhibit corrosion.
3. Check the battery condition with a hydrometer every 500 hours.
SP24. WINTERIZING, OUT-OF-SERVICE

If the generator set will not be used for more than 6 months the following preparations should be taken for long term storage.

1. Change the engine oil and replace the filter.
 Service the air cleaner.
2. Drain, flush, and refill the cooling system.
3. Crank the engine a few times with a starter,
 without starting the engine.
4. Remove and clean batteries.
5. All engine openings should be sealed with plastic bags and tape.
6. Store in a dry protected place.

To Remove Generator Set from Long-Term Storage:
1. Take off all protective coverings and unseal all the openings that were covered up.
2. Install batteries that are fully charged and connect the terminals.
3. Install the fan and alternator belts if they had been removed.
4. Fill the fuel tank.
5. Perform all pre-start checks.
6. Crank the engine for 20 seconds with the starter, without letting the engine start. Wait 2 minutes and crank the engine an additional 20 seconds to make sure all bearing surfaces are well coated.
7. Start the engine and run at no load in a low idle for several minutes. Make sure the engine is warmed up and check gauges before going under load.
8. Check all gauges and check for leaks.
Troubleshooting

If you cannot correct problems with these procedures, see your Lugger or Northern Lights dealer.

DC ELECTRICAL SYSTEM

✓ **Battery Will Not Charge**
Loose or corroded connections:
• Clean and tighten battery connections.
Sulfated or won out batteries:
• Check specific gravity of each battery cell.
• Check electrolyte level of each battery cell.
Loose or defective alternator belt:
• Adjust belt tension.
• Replace belt.

✓ **Undercharged Electrical System**
Excessive electrical load from added accessories:
• Take off accessories or install higher output alternator.
Engine idling excessively.
• Increase the engine RPM when there is a heavy electrical load.
Poor electrical connections on battery, ground strap, starter, or alternator.
• Inspect connections and clean if necessary.
Defective battery:
• Test battery.
Battery charging rate too high:
• Test charging system.

✓ **Starter Inoperative**
Check DC circuit breaker:
• If the breaker is tripped, reset it.
Faulty start circuit relay:
• See dealer.
Blown main system fuse:
• Replace fuse.
Loose or corroded connections:
• Clean and tighten loose battery and harness plug connection.
Low battery output:
• Check specific gravity of each battery cell.
• Check electrolyte level of each battery cell.
Defective electrical system ground wire:
• Repair or replace.

✓ **Starter Cranks Slowly**
Low battery output:
• Battery is too small.
• Battery cables are too small.
Check specific gravity of each battery cell:
• Replace battery if necessary.
Check electrolyte level of each battery cell:
• If low, fill cells with distilled water.
Crankcase oil too heavy:
• Fill with oil of appropriate viscosity.

Loose or corroded connections:
• Clean and tighten loose connections.

✓ **Entire Electrical System Does Not Function**
Check DC circuit breaker:
• If breaker is tripped, reset it.
Faulty connection:
• Clean and tighten battery and harness plug connections.
Sulfated or worn out batteries:
• Check specific gravity and electrolyte level of each battery cell.

ENGINE

✓ **Engine Hard to Start or Will Not Start**
Engine starting under load.
Improper starting procedure:
• See starting section of this manual. Take special note of Bypass Switch operation.
No fuel:
• Check level of fuel in fuel tank.
Low battery output:
• Check electrolyte level and condition.
Excessive resistance in starting circuit:
• Clean and tighten all battery connections.
Crankcase oil too heavy:
• Use oil of proper viscosity.
Improper type of fuel:
• Consult fuel supplier and use proper type of fuel for operating condition.
Water, dirt or air in fuel system:
• Drain, flush, fill and bleed system.
Clogged primary fuel filter element:
• Clean or replace filter element.
Clogged secondary fuel filter element:
• Replace filter element.
Dirty or faulty injection nozzles:
• Have your dealer check injection nozzles.
Electronic Fuel System problem (if equipped):
• See your dealer.
Injection pump not getting fuel or air in fuel system:
• Check fuel flow at supply pump or bleed fuel system.
Troubleshooting

If you cannot correct problems with these procedures, see your Lugger or Northern Lights dealer.

✓ Engine Runs Irregularly or Stalls Frequently
Below normal engine temperature:
 • Remove and check thermostat.
Clogged primary fuel filter element:
 • Clean or replace filter element.
Clogged secondary fuel filter element:
 • Replace secondary filter element.
Water or dirt in the fuel system:
 • Drain, flush, fill and bleed system.
Dirty or faulty injection nozzles:
 • Have your dealer check injection nozzles.
Air in fuel system:
 • Inspect clamps and hoses on suction side of fuel pump for air leak, bleed fuel system.
Improper type of fuel:
 • Consult fuel supplier and use proper type of fuel for operating condition.

✓ Lack of Engine Power
Intake air restriction:
 • Service air cleaner.
Clogged primary fuel filter element:
 • Clean or replace filter element.
Clogged secondary fuel filter element:
 • Replace filter element.
Improper type of fuel:
 • Consult fuel supplier and use proper type of fuel for operating condition.
Overheated engine:
 • See “Engine Overheats” in next category.
Below normal engine temperature:
 • Remove and check thermostat.
Electronic fuel system problem.
 • See your dealer.
Turbocharger not functioning (if equipped).
 • See your dealer.
Leaking exhaust manifold gasket.
 • See your dealer.
Restricted fuel hose.
 • Clean or replace fuel hose.
Low fast idle speed.
 • See your dealer.
Improper valve clearance:
 • Reset valves. Best done by dealer.
Dirty or faulty injection nozzles:
 • Replace injectors. Best done by dealer.
 • See your local dealer.

✓ Engine Overheats
Engine overloaded.
 • Reduce the load.
Low coolant level:
 • Fill tank or radiator to proper level.
 • Check hoses for loose connections and leaks.
Stretched belt or defective belt tensioner.
 • Check automatic belt tensioner and check belts for stretching. Replace as required.
Low engine oil level.
 • Check oil level, add oil as needed.
Incorrect grade of fuel.
 • Use correct grade of fuel.
Cooling system needs flushing:
 • Flush cooling system.
Defective thermostat:
 • Remove and check thermostat.
Defective temperature gauge:
 • Check water temperature with thermometer and replace gauge if necessary.

✓ Engine Knocks
Low oil level:
 • Add oil to engine crankcase.
Injection pump out of time:
 • Call your dealer.
Below normal engine temperature:
 • Check your thermostats.
 • Check water temperature to see if temperature gauge is working properly.
Engine overheating:
 • See “Engine Overheating” section.
Troubleshooting

If you cannot correct problems with these procedures, see your Lugger or Northern Lights dealer.

- **High Fuel Consumption**
 - Engine overloaded.
 - Reduce load.
 - Air in fuel system:
 - Bleed fuel system.
 - Improper type of fuel:
 - Use correct fuel for temperature.
 - Clogged or dirty air cleaner:
 - Service air cleaner.
 - Improper valve clearance:
 - See your dealer.
 - Injection nozzles dirty:
 - See your dealer.
 - Electronic fuel system problem.
 - See your dealer.
 - Engine not at proper temperature:
 - Check your thermostats.
 - Check water temperature with thermometer and replace gauge if necessary.

- **Below Normal Engine Temperature**
 - Thermostats not working properly:
 - Check thermostats.
 - Temperature gauge not working properly:
 - Check water temperature with thermometer.

- **Low Oil Pressure**
 - Low oil level:
 - Fill crankcase to proper level.
 - Improper type of oil:
 - Drain and fill crankcase with correct oil.
 - Partially plugged oil filter:
 - Replace filter.

- **High Oil Consumption**
 - Break-in period:
 - Oil consumption decreases after break in.
 - Crankcase oil too light:
 - Use proper viscosity oil.
 - Oil leaks:
 - Check for leaks in lines around gaskets and drain plug.

- **Engine Emits Black or Gray Exhaust Smoke**
 - Clogged or dirty air cleaner:
 - Service air cleaner.
 - Improper fuel:
 - Use correct fuel for temperature.
 - Engine overloaded:
 - Reduce load.
 - Electronic fuel system problem:
 - See your dealer.

- **Engine Emits White Smoke**
 - Improper fuel:
 - Use correct fuel for temperature.
 - Cold engine:
 - Warm up engine to normal operating temperature.
 - Defective thermostat:
 - Remove and check thermostat.
 - Engine out of time:
 - See your dealer.
 - Defective injection nozzles:
 - See your dealer.

- **Turbocharger not functioning**
 - See your dealer.
 - Injection nozzles dirty:
 - See your dealer.
 - Engine out of time:
 - See your dealer.
AC Wiring Diagram

A.C. Wiring - All voltages
with an AVC63-12
Drawing B-7428H
A.C. Wiring - All voltages with an AVR SX460, Stamford 4 & 12 Wire Drawing B-5703G