OPERATOR’S & PARTS MANUAL

LX-E A.C. GENERATOR

For Generator Models:
LX-E 34 E
Diesel engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm.
OPERATOR’S & PARTS MANUAL OLXE

For Generator Model:
LX-E 34E

Read this manual thoroughly before starting your equipment.
This manual contains information needed to operate your set correctly and safely.

Table of Contents

Introduction... 4
Safety Rules ... 4
Models and Serial Numbers .. 5
Mechanical Construction .. 6

INITIAL INSPECTION AND COUPLING
Initial Inspection.. 6
Coupling with Prime Mover....................................... 6
Grounding ... 6

PERFORMANCE AND FUNCTION
Excitation System... 7
Automatic Voltage Regulator (AVR) 7
Under Speed Protection.. 7
Rotary Rectifier and Surge Suppressor 7

CHARACTERISTICS
Voltage Regulation ... 8
Response ... 8
Voltage Stability .. 8
Short Circuit ... 8
Phase Rotation ... 8

STANDARD VOLTAGE SELECTION TABLE 8

OPERATION - GENERATOR SET
Starting.. 9
Voltage Adjustment.. 9
Running ... 9
Stopping .. 9

OPERATION - VOLTAGE REGULATOR
Safety Rules .. 9
Operation ... 9
Adjustment ... 9

MAINTENANCE
Bearing Inspection.. 10
Insulation Resistance Measurement Method 10
Rotating Rectifier Assembly 10
Parts Replacement Method 10 - 11
Automatic Voltage Regulator Maintenance 11

SPECIFICATIONS
Generator Specifications... 12
Voltage Regulator Specifications............................. 13

TROUBLESHOOTING.. 14

PARTS LIST ... 15 - 16

WIRING DIAGRAM
AVR DST-100-2FAK .. 17
Connection Schematic... 18

Proprietary Information
This publication is the property of Northern Lights, Inc.
It may not be reproduced in whole or in part without the written permission of Northern Lights, Inc.
© Northern Lights, Inc. 2010. All rights reserved. Litho U.S.A. Publication number OLXE 03/10
Introduction

This manual describes procedures for operation, maintenance, inspection and adjustment. It will help the operator realize peak performance through effective, economical and safe operation.

• Read this manual carefully BEFORE operating the generator.
• Study this manual until proper operation becomes personal habit.
• Operation, inspection, and maintenance should be carried out carefully. Safety must be given the first priority.

Safety Rules

• To insure years of trouble-free operation, the specified maintenance is important and should be performed.

• Electrical equipment should always be kept clean. Oil, dust, moisture and salt are all harmful to generators.

• Be careful with electricity. Do not touch rotating parts.

• Ambient Environmental Conditions
 a) Gas: Do not use in an environment of corrosive or flammable gas (gasoline, hydrogen sulfide, methane gas, etc.)
 b) Sandy Dust: Do not use equipment in places with excessive sand and dust.
 c) Humidity: Do not use in very humid environments for long periods of time.
 d) Salt/Seawater: Protect your generator from exposure to salt, water, and water vapor.

• Insulation Resistance and Dielectric: When measuring insulation resistance and dielectric, be sure to disconnect the AVR and rectifier.

• Be sure that the regulator is shut off by switching the CPR (circuit breaker) on the AVR to the off position when the unit is running at less than rated speed, or when the unit is to be run but no power generation is required.

• Before starting your generator, be sure operating conditions are safe.

• Ventilation: When selecting the installation site, be sure that the area is well ventilated and that ambient temperature does not exceed 40°C.

• Be sure to provide generator with cover and protection when operating outside.

LX-E Series AC generators are based on BS 4999 part 20 and IEC34-5, IP22.
Model and Serial Numbers

GENERATOR END MODEL NUMBER

Generator Set Model No Generator Model M944T ... LX-E 34E

SERIAL NUMBERS

• When referencing Northern Lights equipment by serial number, it is important to differentiate between the engine, generator end, and generator set serial numbers.

• The engine serial number is either on a metal tag or stamped directly into the engine block.

• The generator END serial number is on a metal tag attached to the generator end.

• The generator SET serial number is on a separate metal tag attached to the generator end. It may be a five by one inch tag installed directly below the generator end tag. Or, it may look like the illustrations below. Please use the generator SET number in correspondence or when ordering parts.

Figure 1: Generator Set Serial Number Plate
Mechanical Construction

STATOR
The stator frame is fabricated from rolled steel. The round construction provides rigidity and strength to resist excessive mechanical shocks. The stator core is made of high quality silicon steel plates coated with insulating film for prevention of eddy currents. The core is positioned along the internal surface of the frame. The exciter field core is made of special steel plates capable of retaining a high degree of residual magnetism.

BEARINGS
The long-life ball bearings are sealed to prevent grease from escaping and to keep dirt out.

ROTOR
The rotor shaft is made of high quality carbon steel, and is designed and manufactured to be mechanically durable. The rotor is a salient revolving field type with the main field core made from special steel plates having superior magnetic characteristics. The field core elements, exciter rotor, rotary rectifier and cooling fan are integral parts of the same shaft.

VENTILATION
Cooling is provided by the cooling fan of the rotor through suction ports and exhausted through outlet ports. Every machine conforms to the cooling code ICO1 of BS.

Initial Inspection and Coupling

INITIAL INSPECTION
If the generator is stored for long periods of time, store in a clean, dry, ventilated area. After extensive storage time, check the resistance of the coil insulation in accordance with this manual (see MAINTENANCE, page 11) before operation. Be sure there are no abnormal sounds or any overheating during operation.

COUPLING WITH PRIME MOVER
LX-E series single bearing generators make centering and direct coupling easy. Coupling bolt torque is 35 ft.-lb.

GROUNDING
The neutral is not grounded to the frame unless specified.
Performance and Function

EXCITATION SYSTEM
The excitation system of the LX-E Series generator uses an Automatic Voltage Regulator (AVR) which uses a portion of the output power to supply controlled DC power to the exciter field (EX) as shown in Figure 2. When DC power is supplied to the exciter field, output from the exciter armature is rectified by a 3-phase bridge rotary rectifier (Si) and supplied to the main field coils. See Figure 2.

AUTOMATIC VOLTAGE REGULATOR (AVR)
The LX-E generators use a DST-100-2FAK AVR. This is a compact voltage regulator for generators with an output up to 50kW. The AVR can be used in 120V single phase applications and is installed inside the generator junction box.

The AVR obtains sensing input from the main stator coils and compares the rectified value of the sensing voltage with the reference voltage produced inside the AVR. Input power is obtained from the main stator.

Rectified output power to the exciter field is controlled by switching a transistor on and off. This AVR will control terminal voltage even if the input sine wave is distorted.

UNDER SPEED PROTECTION
A frequency sensing circuit is built into the AVR. When the generator speed drops to 90% of rated speed this circuit protects the AVR by reducing the voltage in proportion to the decrease in engine speed. In addition, when the generator is hit with a rapid overload, this circuit will lower the voltage to protect the engine. See Figures 3 & 4.

ROTARY RECTIFIER AND SURGE SUPPRESSOR
The rotary rectifier assembly, consisting of six diodes, functions as a 3-phase full wave rectifier for the output of the exciter armature and supplies this to the main field. To protect the diodes from large, instantaneous voltage surges, surge absorbers are provided as part of the rotating rectifier assembly.
Characteristics

VOLTAGE REGULATION
Generator terminal voltage regulation is within ±1% of the rated voltage in lagging power factor, 1.0 to 0.8, when the load is varied gradually from no load to full load. This value includes the temperature drift and rotating variation.

RESPONSE
After supplying a load instantaneously, the generator voltage should be restored to the steady condition in accordance with BS4999 Part 40, grade VR2.11 to VR2.23.

VOLTAGE STABILITY
In constant load and engine speed, voltage stability remains 0.25% of the rated voltage.

SHORT CIRCUIT
LX-E Series AC generators can provide over 300% of the rated current for a short period of time, with an excitation support system.

PHASE ROTATION
Phase sequence is T1-T2-T3 (U-V-W, A-B-C) with a counterclockwise rotation of generator viewed from the anti-coupling side.

Standard Voltage Tables and Connection Diagrams

<table>
<thead>
<tr>
<th>Winding Connection</th>
<th>Frequency</th>
<th>Volts</th>
<th>Volts</th>
<th>Volts</th>
<th>Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Phase Series Star (High Wye)</td>
<td>60 Hz</td>
<td>480/277</td>
<td>460/266</td>
<td>440/254</td>
<td>416/240</td>
</tr>
<tr>
<td></td>
<td>50 Hz</td>
<td>415/240</td>
<td>400/231</td>
<td>380/219</td>
<td></td>
</tr>
<tr>
<td>3 Phase Parallel Star (Low Wye)</td>
<td>60 Hz</td>
<td>240/139</td>
<td>230/133</td>
<td>220/127</td>
<td>208/120</td>
</tr>
<tr>
<td></td>
<td>50 Hz</td>
<td>208/120</td>
<td>200/115</td>
<td>190/110</td>
<td></td>
</tr>
<tr>
<td>1 Phase</td>
<td>60 Hz</td>
<td>120/240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50 Hz</td>
<td>100/200</td>
<td>110/220</td>
<td>115/230</td>
<td>120/240</td>
</tr>
</tbody>
</table>

Figure 5: Standard Voltage Table
Operation – Generator Set

STARTING
Before starting generator, check the following:
1. Make sure that the wiring is correct.
2. Be sure that nothing is blocking the air inlet/outlet.
3. Make sure that the inside of the generator is clean.
4. Be sure the main line circuit breaker is switched OFF.

After checking each of the above, start the generator in the following procedure:
1. Start engine in accordance with instructions in the Operator’s Manual. Be sure there is no abnormal sound or vibration.
2. The voltage will rise due to the increase in generator speed. After making sure that each interphase voltage is balanced, set the voltage and frequency to the rated level. Be sure the CPR switch is “ON”. The voltage will not rise with CPR “OFF”.
3. After running the generator without load, switch the circuit breaker ON to start the load operation.

VOLTAGE ADJUSTMENT
The generator has been adjusted to obtain optimum voltage at the factory. If the voltage is different, adjust the voltage with the Voltage Adjust provided on the AVR.

RUNNING
Check the following while operating the generator:
1. Abnormal vibration and/or sound
2. Load
3. Environment:
 Keep the air inlet/outlet clean and clear for optimum cooling. Insufficient cooling causes overheating of the generator.

Note: When a 3-phase generator is used at single phase load, each phase current should be balanced and should not exceed 50% of the rated current.

STOPPING
After putting the running generator in a no-load condition by removing the generator load, stop the engine in accordance with the Engine Manual.

Operation – Automatic Voltage Regulator

SAFETY RULES
• Do not leave AVR connected when testing generator with high-pot or megger.
• Adjust the engine only when the CPR is in “OFF” position.

OPERATION
1. Make sure the wiring is correct.
2. Make sure the frequency selection switch is set to the rated frequency (60 or 50 Hz).
3. To adjust the voltage turn the Voltage Adjust (VR1) counter-clock wise. Make sure the CPR is “ON”.
 a. Start the engine with no load and increase the engine speed slowly to the rated level. The voltage will automatically build up (residual voltage: more than 10V).
 b. Adjust to the rated voltage using the Voltage Adjust (VR1).
 c. Make sure of the proper Volt/Frequency characteristic by reducing the generator speed.
 d. Make sure of voltage stability by switching the load “ON” or “OFF”. Use the Stability Adjust (VR2).
 e. If you find no problem with the AVR, start the normal operation.

ADJUSTMENT
Each component of the AVR is adjusted at the factory to obtain optimum voltage. If readjustment is necessary, make sure the voltage, frequency, load, etc. are functioning properly after readjustment.
1. Initial Excitation: For initial excitation use a DC12V or DC24V battery.
 a. Stop the generator.
 b. Remove the AVR connectors.
 c. Connect the field terminal F(+) with the polarity (+) of battery and the terminal F (-) with the polarity (-) and excite AVR field for 2 or 3 seconds.
2. Voltage Adjustment:
 If the voltage output is low, increase the voltage by turning the Voltage Adjust (VR1) slowly clockwise.
3. Stability:
 If the voltage output is unstable, increase the voltage by turning the Stability Adjust (VR2) clockwise.
4. Voltage and Frequency:
 Voltage and Frequency (Hz) have been preset at the factory.
Maintenance

BEARING INSPECTION
For bearing inspection, make sure that there is no abnormal sound during normal running and no overheating. Greasing is not necessary for generators using the double seal type ball bearings, but these will need to be replaced after every 10,000 hours of operation (see PARTS REPLACEMENT METHOD).

INSULATION RESISTANCE MEASUREMENT
If the generator has not been used for a long time, check the insulation resistance of each lead wire at 500V with a megger. It is usually enough to check only the stator winding. In order to prevent damage to the AVR, disconnect it. If the measured insulation resistance value is above 2 M ohms, there is no problem, but if it is lower than that, check to see if the inside of the generator is wet or dirty. If dust has accumulated, blow it out with dry compressed air. Wipe off oil stains with a cloth. If the generator is damp, dry it and re-check.

ROTATING RECTIFIER ASSEMBLY
The rotating rectifier assembly needs little attention. Clean off dust and oil stains periodically. In the unlikely event that it becomes necessary to replace the diode elements and surge absorber elements. Refer to PARTS REPLACEMENT METHOD.

PARTS REPLACEMENT METHOD
1. Bearing Replacement:
 a. In order to replace the bearing, first remove the bearing holder housing on the end of the generator. Loosen and remove the four housing bolts. Remove the bearing holder gently since there is a risk that the rotor could fall and damage the exciter rotor or the exciter stator.
 b. Using a bearing puller, extract bearing from shaft.
 c. When installing a new bearing, place a steel pipe on the inner race surface, and fit the bearing by tapping it lightly with a hammer.

 Figure 7. Bearing Puller

 Note: Absolutely do not apply pressure to outer race of the bearing during insertion.

2. Replacement of Rotary Rectifier Parts:
 a. Rotary rectifier parts are all located at the rear of Exciter rotor. For parts replacement, remove the bearing shield.
 b. To test the rotating rectifier diodes, disconnect the lead to the diode element and measure the resistance between the anode and cathode on each diode (see Figure 8).

 Caution: Do not overheat the diodes. If the resistance value of the diode in the forward direction is low and the reverse direction resistance value shows infinity, it is good. If this is not the case, the diode element is defective and must be replaced. The diode elements can be damaged if overtightened.

 c. “J” type diode elements are fastened to the J(+) side of the rotating rectifier assembly, and “K” type diode elements to the K(-) side.
d. The Diode Torque Specifications for LX-E models is \(5 \text{ mm} = 48 \text{ in. lb.} \)
e. In order to test whether the rotating rectifier assembly surge absorber elements are good or not, first disconnect all lead wires as described in PARTS REPLACEMENT METHOD, Point 2, (above) and measure the resistance across surge absorber elements with a tester.
 • Good surge absorber elements have about 10-30 K ohms, but if the resistance reading is near 0 ohms, the surge absorber elements is defective and must be replaced.
 • Also, inspect outside of surge absorber and replace if it is cracked.
 • In addition, when installing surge absorber elements, apply Loctite to the bolts.

3. Bearing Housing Replacement:
 Inspect the O-Ring. If cracked, replace.
 Reassemble carefully, aligning housing with bearing. Tighten housing bolts to 2.5 kpm (18 ft/lbs.).

4. Rotating Rectifier Assembly Detailed Structure:

Figure 8. Testing Diode Elements

Figure 9. Rotating Rectifier.

Maintenance – Automatic Voltage Regulator

1. Keep the AVR clean at all times. Make sure no dust or moisture accumulates on the AVR.
2. Inspect periodically making sure that wiring connections are not loose.
Generator Specifications: Taiyo Winding Resistances for LX-E 34E

All ratings in Ohms @ 20° C

<table>
<thead>
<tr>
<th>Section</th>
<th>Resistance (V)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATOR:</td>
<td>0.0580</td>
<td>1 or 3 Phase</td>
</tr>
<tr>
<td>Rotor:</td>
<td>3.3</td>
<td>1 or 3 Phase</td>
</tr>
<tr>
<td>EXCITER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATOR:</td>
<td>16.4</td>
<td>1 or 3 Phase</td>
</tr>
<tr>
<td>Rotor:</td>
<td>0.629</td>
<td>1 or 3 Phase</td>
</tr>
<tr>
<td>AUXILIARY WINDING:</td>
<td></td>
<td>1 or 3 Phase</td>
</tr>
<tr>
<td></td>
<td>1.34</td>
<td>1 or 3 Phase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Phase</th>
<th>3 Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>FULL LOAD</td>
<td>50 Hz/ 220 volts 21.2 volts</td>
</tr>
<tr>
<td>EXCITATION</td>
<td>50 Hz/ 400 volts 29.0 volts</td>
</tr>
<tr>
<td>VOLTAGE:</td>
<td>60 Hz/ 480 volts 27.0 volts</td>
</tr>
</tbody>
</table>
Automatic Voltage Regulator: DST-100-2FAK

Sensing Output
- Frequency: 50 Hz, 60 Hz
- Voltage:
 - 100 Volt Class: 100V (86.5V~110V~120V), 120V
 - 200 Volt Class: 200V (173V~220V~240V), 240V
- Phase: Single Phase, Single Phase

Power Input
- Voltage: 100V ~ 127V ~ 139V
- Frequency: 50 Hz / 60 Hz
- Phase: Single Phase, Single Phase

Sensing Output
- Max. Voltage: 87% of Power Input Voltage (DC Voltage)
- Continuous Current: Maximum 3A Current
- Current Maximum Forcing: 9A forcing 1 to 5 seconds at 25°C
- Field Resistance: Minimum 15 Ohms

Voltage Adjust Range
- Minimum ±5% of Normal Voltage

Volt/ Hertz Characteristic
- 57 Hz in 60 Hz operation mode, 47 Hz in 50 Hz operation mode

Voltage Build-Up
- Self-Building Up at over 6V Power Input Voltage

Voltage Changeable Rate
- Maximum ±1.5%

Temperature Drift
- Within ±0.02%/ degree C

Operating Temperature
- -4°F (-20°C) to 140°F (60°C)

Storage Temperature
- -4°F (-20°C) to 158°F (70°C)

Outside Dimension
- 5.6" x 4.0" x 1.57" (140mm x 100mm x 40 mm)

Weight
- 1.4 lbs. (0.65 kgs)
Trouble Shooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Recommendation(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only a FEW VOLTS of output</td>
<td>Loss of residual magnetism of the exiter field</td>
<td>• Flash field.</td>
</tr>
<tr>
<td></td>
<td>Disconnection or short circuit of windings</td>
<td>• Check the insulation of all windings and check the resistance value.</td>
</tr>
<tr>
<td></td>
<td>Defective AVR</td>
<td>• Check the AVR.</td>
</tr>
<tr>
<td></td>
<td>Defective rotating rectifier assembly</td>
<td>• Replace diode elements.</td>
</tr>
<tr>
<td>Voltage is LOW</td>
<td>Incorrect wiring (GEN, AVR)</td>
<td>• Check the winding connection.</td>
</tr>
<tr>
<td></td>
<td>Low speed</td>
<td>• Check the engine.</td>
</tr>
<tr>
<td></td>
<td>Overload</td>
<td>• Reduce the load.</td>
</tr>
<tr>
<td></td>
<td>Defective AVR</td>
<td>• Check the AVR.</td>
</tr>
<tr>
<td>Voltage DIPS when on load</td>
<td>Starting of big motor or spot welding machine</td>
<td>• About 15% voltage dip is no problem.</td>
</tr>
<tr>
<td></td>
<td>Defective diode on rotating rectifier</td>
<td>• Change diode.</td>
</tr>
<tr>
<td>[F(+) – F(-) terminal voltage will show a very high value when a diode is defective]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage is HIGH</td>
<td>Incorrect wiring (GEN, AVR)</td>
<td>• Check the AVR.</td>
</tr>
<tr>
<td></td>
<td>Too high speed</td>
<td>• Check the engine.</td>
</tr>
<tr>
<td></td>
<td>Defective AVR</td>
<td>• Check the AVR.</td>
</tr>
<tr>
<td>Voltage FLUCTUATES</td>
<td>Wiring leads are loose</td>
<td>• Tighten leads.</td>
</tr>
<tr>
<td></td>
<td>Irregular speed of engine</td>
<td>• Check the engine.</td>
</tr>
<tr>
<td></td>
<td>Poor AVR adjustment</td>
<td>• Check the AVR.</td>
</tr>
<tr>
<td></td>
<td>External noise</td>
<td>• Check the filter.</td>
</tr>
<tr>
<td>Abnormal SOUND or VIBRATION</td>
<td>Foundation uneven</td>
<td>• Check ground level.</td>
</tr>
<tr>
<td></td>
<td>Poor mounting</td>
<td>• Check the mounting section.</td>
</tr>
<tr>
<td></td>
<td>Misaligned coupling</td>
<td>• Check the coupling section.</td>
</tr>
<tr>
<td></td>
<td>Defective bearing</td>
<td>• Replace the bearing.</td>
</tr>
<tr>
<td>No</td>
<td>Description</td>
<td>LX-E 34E</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>1</td>
<td>Stator Assembly</td>
<td>GW-20650-STF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with frame GM304980-1</td>
</tr>
<tr>
<td>2</td>
<td>Rotor Assembly</td>
<td>GM304982</td>
</tr>
<tr>
<td>3</td>
<td>Exciter Field Assembly</td>
<td>WKC-0131-F</td>
</tr>
<tr>
<td>4</td>
<td>Rectifier Assembly</td>
<td>3T201-084-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with diode element</td>
</tr>
<tr>
<td>5</td>
<td>Diode Element</td>
<td>SKN 26/12</td>
</tr>
<tr>
<td></td>
<td>Diode Element</td>
<td>SKR 26/12</td>
</tr>
<tr>
<td>6</td>
<td>Bearing</td>
<td>6311ZZ</td>
</tr>
<tr>
<td>7</td>
<td>Fan Assembly</td>
<td>GM34865-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with coupling boss GM405464</td>
</tr>
<tr>
<td>8</td>
<td>Coupling Plate</td>
<td>4M698-011-1</td>
</tr>
<tr>
<td>9</td>
<td>Bearing Shield</td>
<td>GM34467-3</td>
</tr>
<tr>
<td>10</td>
<td>Rubber Cap</td>
<td>GM403175</td>
</tr>
<tr>
<td>11</td>
<td>Ventilation Cover</td>
<td>GM413645</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inlet</td>
</tr>
<tr>
<td>12</td>
<td>Ventilation Cover</td>
<td>GM413639</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outlet</td>
</tr>
<tr>
<td>13</td>
<td>Automatic Voltage Regulator</td>
<td>22-42071</td>
</tr>
<tr>
<td>14</td>
<td>Junction Box</td>
<td>3T303-671</td>
</tr>
<tr>
<td>15</td>
<td>Top Cover, Junction Box</td>
<td>4T302-144</td>
</tr>
<tr>
<td>16</td>
<td>Side Cover, Junction Box</td>
<td>4T302-859</td>
</tr>
<tr>
<td>17</td>
<td>Bracket, Junction Box</td>
<td>3T303-672</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left and right</td>
</tr>
<tr>
<td>18</td>
<td>Rubber Mount</td>
<td>33-40007</td>
</tr>
<tr>
<td>19</td>
<td>Terminal (Output)</td>
<td>22-45413</td>
</tr>
<tr>
<td>20</td>
<td>Terminal</td>
<td>UK150-3J</td>
</tr>
<tr>
<td>21</td>
<td>Circuit Breaker 3 Amp</td>
<td>22-42077</td>
</tr>
</tbody>
</table>
Junction Box (Single Phase Wiring Shown)

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grommet</td>
<td>NG-79-R</td>
</tr>
<tr>
<td>2</td>
<td>Circuit Breaker</td>
<td>22-40018</td>
</tr>
<tr>
<td>3</td>
<td>Terminal</td>
<td>22-45413</td>
</tr>
<tr>
<td>4</td>
<td>Automatic Voltage Regulator (DST-100-2FAK)</td>
<td>22-42071</td>
</tr>
<tr>
<td>5</td>
<td>Terminal</td>
<td>UK150-3J</td>
</tr>
<tr>
<td>6</td>
<td>Circuit Breaker 3 Amp</td>
<td>22-42077</td>
</tr>
<tr>
<td>7</td>
<td>Rubber Mount</td>
<td>33-40007</td>
</tr>
<tr>
<td>8</td>
<td>Bracket, Junction Box Mtg. - Right and left</td>
<td>3T103-672</td>
</tr>
<tr>
<td>9</td>
<td>Junction Box</td>
<td>3T103-671</td>
</tr>
<tr>
<td>10</td>
<td>Relay Board Sub-Assembly</td>
<td>22-70083-1</td>
</tr>
<tr>
<td></td>
<td>Relay Board Sub-Assembly</td>
<td>22-70086-1</td>
</tr>
<tr>
<td>11</td>
<td>Relay 12 Volt (4 ea.)</td>
<td>22-42047</td>
</tr>
<tr>
<td></td>
<td>Relay 24 Volt (4 ea.)</td>
<td>22-40085</td>
</tr>
<tr>
<td>12</td>
<td>Timer Module 12 Volt</td>
<td>22-40407</td>
</tr>
<tr>
<td></td>
<td>Timer Module 24 Volt</td>
<td>22-40408</td>
</tr>
</tbody>
</table>
NOTE S:
1. SET SW2 FOR CURRENT APPLICATION (50 OR 60 HZ.)
2. SET SW3 PER APPLICATION IF REMOTE VOLTAGE ADJUST RHEOSTAT IS USED.
3. FOR REMOTE VOLTAGE ADJUST RHEOSTAT CUT JUMPER AND SPLICER INTO PURPLE LEADS.
4. DELETE NEUTRAL CONDUCTOR (AND JUMPER IF PRESENT), IF LOWER VOLTAGE IS NOT REQUIRED.
5. GROUNDED IS TO BE BY CUSTOMER, AT CUSTOMER'S DISCRETION.
6. HIDDEN (DASHED) LINES INDICATE CUSTOMER SUPPLIED AND CONNECTED MAIN OUTPUT CONDUCTORS, SIZING TO BE DETERMINED PER INSTALLATION.
Connection Schematic
3T103-437

Connection Box

Voltage Selection and Internal Connection
- 60Hz: 480/277V
- 50Hz: 400/231V

Series Star (Three Phase)
- 60Hz: 208/120V
- 50Hz: 220/127V

Parallel Star (Three Phase)
- 60Hz: 240/120V
- 50Hz: 220V

Parallel Zig-Zag (Single Phase)
- 3

For 120V Nominal Sensing: Connect to Terminal 100.
For 240V Nominal Sensing: Connect to Terminal 200.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name of Parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Generator</td>
</tr>
<tr>
<td>EX</td>
<td>Exciter</td>
</tr>
<tr>
<td>F1</td>
<td>Generator Field</td>
</tr>
<tr>
<td>F2</td>
<td>Exciter Field</td>
</tr>
<tr>
<td>S</td>
<td>Surge Absorber</td>
</tr>
<tr>
<td>AVR</td>
<td>Auto. Volt. Regulator</td>
</tr>
<tr>
<td>CPR</td>
<td>Circuit Protector</td>
</tr>
</tbody>
</table>

Connection Schematic
3T103-437