

OES

for the EasyStart: ASY-366-xxx with MODBUS support

OPERATOR'S MANUAL

Technicold Marine Systems | www.technicold.com

Technicold by Northern Lights 1419 W. Newport Center Drive Deerfield Beach, FL 33442 Tel: (954) 421-1717 Fax: (954) 421-1712

Copyright ©2015, Northern Lights, Inc. All rights reserved. Northern Lights, Technicold, the Northern Lights logo, and the Technicold logo are trademarks of Northern Lights, Inc.

Printed in U.S.A. PART NO.: OES

Connections: Follow the included wiring diagram and connect EasyStart as shown. Connect L1 and L2 to a current protected control device such as a thermostat and contactor on a circuit breaker.

Learning: When a compressor is first connected, EasyStart will learn for the first seven to eleven starts of the compressor. After the learning process is complete, EasyStart chooses the best starting characteristic for the compressor. No action is required and the compressor can be used normally during the process.

Jumper Settings: Two options can be selected using the provided board mounted header and shorting jumper. Power must be removed from EasyStart when changing jumper settings. When the shorting jumper is placed on pins 1 and 3 in the "Fixed Start" position, EasyStart will use a factory defined short ramp on every start. This is used for diagnosing certain types of system problems and should only be used with manufacturer support.

If a compressor is replaced with a different size, manufacturer or type of compressor, relearning may be required. Place the shorting jumper on pins 4 and 6. Start a cycle with the compressor control device and terminate the cycle. Remove the jumper from the relearn position and return it to the normal position. The learning process will occur as described above. **The re-learn jumper position also returns the MODBUS communications settings to the default values.

Faults: Three LED lights are provided to help diagnose detected faults. All repairs and tests must be done with power removed. The actual LED indications for the following faults are shown in table in the wiring diagram at the end of this document.

SC to RC Terminal Short: A short was detected between the SC and RC terminals that could indicate improper wiring or a stuck start relay. The relay can be checked by removing the connections and testing continuity between the terminals. If a short exists, the board must be replaced. If this condition is detected, power should be removed quickly to prevent failure of the start capacitor.

High compressor current: Compressor running current is limited to a maximum of 38 amps. EasyStart will shut down and indicate this fault if current exceeds this value.

Open overload protector: An improper operating condition exists that is consistent with an overload protector opening during operation. Any condition that causes the connection to the compressor to be broken can cause this fault.

Compressor stalled: An improper operating condition exists that is consistent with a stalled compressor. This condition is triggered by an improper signal on the start winding of the compressor and can be caused by a broken start winding wire connection, a failed start capacitor, as well as a locked compressor rotor – which can be due to a lack of pressure equalization at startup, low voltage at startup, and other causes.

Power Interrupted: A temporary power loss was detected and EasyStart shut down the compressor. If power is restored before EasyStart completely loses power, EasyStart will restore operation after two minutes and log a fault.

Features:

Fault history access for last 32 events.

Adjustable MODBUS addressing

Changeable baud rate and parity

Compressor RMS running current available during operation

Start current profile available after compressor starts

Operation status

Firmware revision

Conventions within this document:

0x Values with this prefix are hexadecimal.

Ob Values with this prefix are binary.

Specifications:

Interface: RS485

Protocol: MODBUS RTU

RTU protocol default: 11 bits

Coding system: 8 bit binary

Start bits: 1

Data bits: 8, least significant bit sent first.

Parity: Even

Stop bits: 1

Device address range: 1 to 247

Baud: 1200, 2400, 4800, 9600, 19200, 38400

Parity: Even, Odd, None

Stop bits: Automatically selected based on parity.

Default baud: 19200

Minimum silent interval time: 30mS

Data Frames:

Data frames from master to slave and from slave to master follow the MODBUS.ORG: MODBUS over serial line specification as follows:

Address (1byte) Function Code (1 byte) Data (0 to 252 bytes) CRC (16 bits)

Function Codes:

Function	Definition	Parameter	Access	Response
Code		Range	Туре	Bytes
1 (0x41)	Read byte(s)	0x0000 to 0xFFFF	Byte	Variable
2 (0x42)	Write byte(s)	0x0000 to 0xFFFF	Byte	Variable

Read byte(s):

This function code is used to read specific data values from the control. Valid parameter entries are listed in the Read Parameter Table. Values requested outside the ranges provided in the Read Parameter Table will generate an error. Byte counts should match the counts used in the table.

<u>Reques</u>t:

Name	Length	Range
Parameter Address	1 byte	0x01 to 0xF7
Function Code	1 byte	0x41
Parameter Number	2 bytes	0x0000 to 0xFFFF
Byte count	1 byte	N = 0x01 to $0xF0$
CRC	2 bytes	0x0000to 0xFFFF

Response:

Name	Length	Range	
Parameter Address	1 byte	0x01 to 0xF7	
Function Code	1 byte	0x41	
Parameter Number	2 bytes	0x0000 to 0xFFFF	
Byte count	1 byte	$N^* = 0x01$ to $0xF0$	
Response bytes	N* bytes	0x01 to 0xF0	
CRC	2 bytes	0x0000 to 0xFFFF	

N= Quantity of bytes requested

Error (exception response)

Name	Length	Range
Parameter Address	1 byte	0x01 to 0xF7
Error Code	1 byte	0xC1
Exception Code	1 byte	Codes 1,2,3,or 4
CRC	2 bytes	0x0000 to 0xFFFF

Read ParameterTable

Parameter Address	Contents	Byte Count	Values	Response
0x8000	Baud rate	2	0x01A0 = 2400 baud 0x00CF = 4800 baud 0x0067 = 9600 baud 0x0033= 19200 baud 0x0019 = 38400 baud	9 bytes
0x8002	Parity	1	0x08= no parity 0x20 = even parity 0x30 = odd parity	8 bytes
0x8003	Slave Address	1	0x01 to 0xF7	8 bytes
0x8004	Fault history pointer	1	0x00 to 0x19	8 bytes
0x8005	RMS Current	1	0x00 to 0x64	8 bytes
0x8006**	Fault history	5	0x00 to 0xFF	12 bytes
0x80C0	Status	1	0x00 to 0xFF	8 bytes
0x80C1	Revision	2	0x00 to0xFF	9 bytes
0x8100	Compressor current data	200	0x00 to 0xFF	207 bytes

** Starting address, see description.

Reading Baud, Parity, and Slave Address:

This data should be read for change verification by sending the device an appropriately formed data frame containing the device address, a read data function code, an address from the read data table, number of data bytes and the CRC.

Reading RMS Current:

This address provides the instantaneous RMS running current for the compressor. The value can be read any time.

Reading the Fault History:

History is stored in 32 - five byte intervals indexed by the fault history pointer. The Fault History Pointer return value is the index to the oldest fault in the history. When a fault occurs, the fault information in the oldest fault location is replaced by the current fault and the pointer is incremented. If the pointer value exceeds thirty one, the pointer will be reset to zero. Reading the address at 0x8006 + ((history fault pointer - 1)*5) will return the most recent fault.

Example:

If the history pointer returns a 5, the most recent fault is stored at address 4:

(History read address + (4*5)) = (0x8006 + 0x14) = 0x801A

Reading the information stored at parameter address 0x801A returns the most recent fault information. Note: A special case exists if the fault pointer returns a 0 then the most recent fault information is located at Parameter address 0x80A1.

Fault History Table

Byte #	Value type	Definition
0	Undefined	Undefined
1	Bit field (see Fault Bit Field Table)	Fault type
2	8 bit	Line frequency (Hz)
3,4	16 bit: 3 = MSB, 4 = LSB	Current(Amps)

FaultBit Field Table

Decimal	Binary***	Hex	Fault
0	0b00000000	0x00	Normal operation
8	0b00001000	0x08	Open Overload Protector
16	0b00010000	0x10	High Compressor Current
24	0b00011000	0x18	SC to RC Terminal Short
32	0b00100000	0x20	Compressor stalled while starting
40	0b00101000	0x28	Compressor stalled after starting
48	0b00110000	0x30	Power interrupted
56	0b00111000	0x38	Normal operation

Compressor Current Data

RMS current data for the compressor start is available once the compressor is running. This data is organized in byte values representing the actual RMS current in amps for a specific time interval. One byte is sent for each zero crossing event that occurs. For a 60 Hz line, each data byte represents the RMS current over an 8.33 millisecond period. This data can be retrieved as shown in Frame Usage Example 2.

Status

Operating status may be polled at any time while power is supplied. Response bit field definitions can be found in the Status Response Table. Faults are defined in the Fault Bit Field Э

stuck compressor relay is indicated, EasyStart is in lock out and no restart attempts If any other fault is indicated, EasyStart will wait two minutes and attempt a restart.

bit is set, EasyStart is in the process of starting the compressor. Start bits will remain active when set even after the compressor has started. Once the running bit is set, EasyStart has successfully started the compressor and is monitoring run current and other conditions.

Status Response Table				
Bit	Hex	Definition		
0	0x01	Not defined		
1	0x02	Starting		
2	0x04	Starting		
3	0x08	Fault		
4	0x10	Fault		
5	0x20	Fault		
6	0x40	Running		
7	0x80	Not defined		

Two bytes are returned containing the software revision. The first byte is an ASCII representation letter code. The second byte is the numerical decimal code for the revision. Revision A30 would return a 0x65 and 0x1E for the fifth and sixth return bytes respectively.

Write Byte(s):

This function is used to set parameters defined in the Write Address Table. Parameter addresses or data values outside the values provided in the table will cause an exception response.

<u>Reques</u>t:

Name	Length	Range		
Address	1 byte	0x01 to 0xF7		
Function Code	1 byte	0x42		
Starting Address	2 bytes	0x0000 to 0xFFFF		
Byte count	1 byte	N = 0x01 to $0xF0$		
Data Bytes	N bytes	0x00 to 0xFF		
CRC	2 bytes	0x0000 to 0xFFFF		
N - Overstitute of by too to be written				

N = Quantity of bytes to be written

Response:

Name	Length	Range		
Address	1 byte	0x01 to 0xF7		
Function Code	1 byte	0x42		
Starting Address	2 bytes	0x0000 to 0xFFFF		
Byte count	1 byte	$N^* = 0x01$ to $0xF0$		
Response bytes	N* bytes	0x01 to 0x ⊮		
CRC	2 bytes	0x0000 to 0xFFFF		
N= Overstity of by teasy written				

N= Quantity of bytes written

Error (exception response)

Name	Length	Range
Address	1 byte	0x01 to 0xF7
Error Code	1 byte	0xC2
Exception Code	1 byte	Codes 1,2or 3
CRC	2 bytes	0x0000 to 0xFFFF

Write Address Table

ParameteAddress	Contents	Byte Count	Values	Response
0x8000	Baud rate	2	0x01A0 = 2400 baud 0x00CF = 4800 baud 0x0067 = 9600 baud 0x0033 = 19200 baud 0x0019 = 38400 baud	9 bytes
0x8002	Parity	1	0x08 = no parity 0x20 = even parity 0x30 = odd parity	8 bytes
0x8003	Slave Address	1	0x01 to 0xF7	8 bytes

Setting Baud and Parity:

Changes are made to the register addresses assigned to Baud or Parity should be set then verified by reading the contents. Power must then be removed from the device and reapplied to complete the change. Master communications settings must then be matched to the changed communications parameter settings for communication to occur. A parity change to "none" will result in a change to two stop bits in keeping with the 11 bit RTU MODBUS protocol. Changing the Slave Address:

Changes made to the register address assigned to the Slave Address are active as soon as the response is received from the device.

Exception Responses:

Exception	Definition
0x01	Illegal function
0x02	Illegal data address
0x03	lllegal data value

Message Frame Usage Example 1

Action: Write newbaud Command: Master–Slave

Address 0x01		01	Slave address =01								
Function 0x42			Function iswrite								
Data	Parameter High Byte0x80			80	High byteparameter number to be written						
	Parameter Low Byte 0x00			Low byteparameter number to be written							
	Byte Count		0x	02	Num	ber o	ofbyt	es to	o be	writt	en=2
	First Byte		0x	00	Valu	efor	9600) baı	ud (0	x006	67)
	Second byte		0x	67							
CRC Low byte		0x	E5	Low	byte	of C	RC	chec	k		
	CRC High byte	е	0x	16	High	byte	e of C	CRC	chee	ck	
Messa	age Frame:	01	42	80	00	02	00	67	E5	16	

Answer Slave Master:

Addre	SS	0x01	Slave address=1
Functi	on	0x42	Function sent
Data	Parameter High Byte	0x00	High byteparameter number written
	Parameter Low Byte	0xF0	Low byteparameter number written
	Byte Count	0x02	Number of bytes written
	First Byte	0x00	Value for 9600 baud (0x0067)
	Second byte	0x67	
	CRC Low byte	0xE5	Low byte of CRC
	CRC High byte	0x16	High byte of CRC

Reply frame: 01 42 80 00 02 00 67 E5 16

Message Frame Usage Example 2

Action: Read StartCurrent

SS	0x01	Slave address = 1
on	0x41	Function is read
Parameter High Byte	0x81	High byteparameter number for start current
Parameter Low Byte	0x00	Low byteparameter number for start current
Byte Count	0xC8	200 bytes returned
CRC Low byte	0x5C	Low byte of CRC check
CRC High byte	0x42	High byte of CRC check
	ss on ParameterHighByte ParameterLowByte Byte Count CRC Low byte CRC High byte	ss 0x01 on 0x41 ParameterHighByte 0x81 ParameterLowByte 0x00 Byte Count 0xC8 CRC Low byte 0x5C CRC High byte 0x42

Message Frame: 01 41 81 00 C8 5C 42

<u>Answer Slave–Master</u>				
Address 0x01		Slave address=1		
Function	0x41	Function sent		
Data Parameter High Byte	e0x81	High byte parameter number written		
ParameterLow Byte	0x00	Low byte parameter number written		
Byte Count	0xC8	Number of bytes written		
** 200 bytes returne	d with	last start data		
CRC Low byte	0x11	Low byte of CRC		
CRC High byte	0x22	High byte of CRC		

 Reply frame:
 01
 41
 81
 00
 C8
 200 bytes returned here containing data*
 F0
 1E

*CRC example uses 0x00 for all 200 bytes.

Exception Response Example: Action: Change Baud

Message: same as example 2

Exception response:

Address	0x01	Slave address = 1
Function	0xC2	Exception response for function 0x42
Exception code	0x03	Illegal address error
Check CRC Low byte	0xA0	Low byte of CRC
CRC High byte	0xD4	High byte of CRC

Exception frame: 01 C2 03 A0 D4

CRC Calculation:

The calculation and specification for the CRC is available from: <u>http://www.modbus.org/docs/Modbus_over_serial_line_V1_0</u>2.pdf

WIRING DIAGRAM

1419 W. Newport Center Drive, Deerfield Beach, FL 33442
Tel: (954) 421-1717 • www.northern-lights.com
Northern Lights and Technicold are registered trademarks of Northern Lights, Inc.
© 2015 All rights reserved. Litho USA. OES